
CSCI 490 Write-Up

By: Nick Chandler, Mwangi P., Ian P.

June 30, 2024

Abstract

The problem our research targets is providing fast, reliable predictions of stellar parameters
with a quantification of the predictions’ uncertainty at a level of performance higher than that of the
traditional methods. A large part of the research is devoted to the quantification of uncertainty in
model predictions due to the inexact nature of machine learning. Additionally, designing the model
to be robust to missing data and features constitutes another significant portion of the research.
To accomplish these goals, we draw inspiration from ideas in Probabilistic Machine Learning[3] as
well as methodologies in astro-informatics. We detail the results of these analyses and address the
effective and ineffective aspects, examining their effects on the pipeline and therefore on predictions.

1 Introduction

Most of the stars in our galaxy are a part of eclipsing binary systems. These systems are composed of
two stars revolving around a shared center. The light emitted from these systems follows a periodic
pattern, decreasing when one star eclipses the other, reaching a minimum when the larger star eclipses
the smaller star. These light curves, equivalently time series of flux values, are captured by multiple
satellites. Along with the radial velocity data, we use deep learning to predict various stellar parameters
about the systems and the constituent stars.

In order to accomplish this, we use a deep neural network created with the Pytorch Library [1].
Specifically, we use a convolutional neural network architecture which allows us to learn from the
spatially related information in the light curves and radial velocities. Additionally, we experiment with
a custom loss function derived using maximum likelihood estimation as well as a reparameterization of
the model weights. Then we examine data dropping to see how our model behaves under the real-world
conditions of missing data. We also examine phase folding to address data security, then we detail
the results of applying the Discrete Fourier Transform (DFT) on our input data before passing it into
the neural network. Finally, we examine the information richness of our data and the usefulness it
has for our model by omitting specific pieces and gauging the model performance after omission. We
conclude with a summary of our processes, an analysis of the results we obtained, an evaluation of
which techniques performed the best, and directions for future work.

2 Literature Review

A few papers related to the project are detailed in the following sections. Specifically, we examined
two papers on astronomy which detail the problem we are trying to solve and then one on statistics
which further explores the problem and provides background for some of the methods.

2.1 PHOEBE[2]

Here we detail the PHOEBE Paper which concerns the previous methods for the estimation of stellar
parameters.

2.1.1 Introduction and Scientific Goals

The introduction highlights the focus of the paper on the release of PHOEBE 2.3, specifically designed
to tackle the challenging inverse problem inherent in the analysis of eclipsing binary systems. Eclipsing

1

binaries are acknowledged for their crucial role in enhancing our understanding of stellar parameters
and refining stellar evolution models. The complexity of the inverse problem is attributed to the
intricate parameter space and the diverse morphologies exhibited by these binary systems. PHOEBE
is introduced as a modeling code, and a noteworthy aspect is the provision of a common interface for
engaging with a variety of algorithms. The historical context is provided, underscoring that previous
versions of PHOEBE primarily concentrated on improving the forward model, often leaving the inverse
problem unaddressed.

2.1.2 Algorithmic Approach

The paper categorizes algorithms into three distinct types: “estimators,” “optimizers,” and “samplers.”
This categorization sets the stage for a more detailed exploration of the functionalities that these
algorithms provide in the context of solving the inverse problem.

2.1.3 Estimators

Estimators are defined as algorithms that play a crucial role in determining the parameter space of
a system based on the available observational data. These algorithms, as detailed in the paper, offer
a means to obtain initial solutions for the system parameters directly from the observational data,
alleviating the need for a comprehensive forward model in the initial stages of analysis.

2.1.4 Optimizers and Samplers

The paper introduces optimizers as algorithms designed to minimize the merit function by maximizing
the log probability. This minimization process contributes significantly to finding optimal solutions for
the system parameters. Simultaneously, samplers are described as algorithms adept at exploring the
local parameter space. Their primary role is to uncover any degeneracy between parameters, thereby
providing a more nuanced understanding of the characteristics of the system under consideration.

2.1.5 PHOEBE 2.3 Features and Future Plans

The latest release, PHOEBE 2.3, is presented as a significant advancement aiming to address the
challenges associated with estimating model parameters without necessitating the construction of the
entire model. This innovation is particularly noteworthy as it reduces the learning curve for users,
allowing them to estimate parameters efficiently. The introduction of a common interface for multiple
algorithms further enhances user accessibility. The paper closes by emphasizing the ongoing develop-
mental trajectory of PHOEBE, with a commitment to incorporating additional algorithms and forward
models within the same framework, ensuring its continued relevance and adaptability in the field of
eclipsing binary system analysis.

2.2 The EBAI Project

”Artificial Intelligence Approach to the Determination of Physical Properties of Eclipsing Binaries.
I.” highlights the importance of automatic data analysis due to an anticipated surge in astronomical
data from space-based surveys. These surveys were anticipated to generate millions of new Eclipsing
Binary (EB) light curves. This fills the scarcity in data analysis in an area where data has typically
analyzed through intensive manual methods.

2.2.1 Methodology

The authors propose the use of an artificial neural network (ANN) trained on a sample of 33,235 model
light curves. The ANN is designed to output approximate model parameters, such as temperature ratio
(T2/T1), the sum of relative radii ((R1+R2)/a), and eccentricity components (e sin(ω), e cos(ω)), as well
as the sine of inclination (sin i) for each input light curve. The ANN’s training uses a computationally
intensive back-propagation algorithm, so the authors use a parallelized version of the algorithm on a
Beowulf cluster to speed up the training phase. This bypasses the manual step of parameter estimation,
automating the analysis of EB light curves.

2

2.2.2 Data Pre-processing

Observational light curves pose a challenge to ANNs as they suffer from irregularities, such as incom-
plete phase coverage and noise. For this problem, authors developed a novel solution called polyfit
which fits a smooth curve to the observed data points before feeding them into the ANN. This creates
a polynomial chain that fits the data smoothly without requiring the function to be differentiable at
the knots. This process improves the data input by making parameter estimation more accurate.

2.2.3 Results

The ANN is tested on both synthetic and real data sets. The synthetic data set includes 10,000
light curves generated similarly to the training set, ensuring a robust evaluation of the network’s
performance. The real data tests involve 50 binaries from the Catalog and Atlas of Eclipsing Binaries
(CALEB) database and 2580 light curves from the OGLE survey.The ANN demonstrates high accuracy,
with about 90% of the OGLE sample and nearly 100% of the CALEB sample showing less than a 10%
error in output parameter values.

2.3 Bayesian Neural Networks

Given that neural networks have a problem of making overconfident predictions, we seek to mitigate
and account for the uncertainty of these predictions using bayesian neural networks.

2.3.1 Bayes Theorem

Recall Baye’s Theorem:

P (A|B) =
P (B|A)P (A)

P (B)
=

P (A ∩B)

P (B)
, P (B) > 0

This essentially says that the conditional probability of an event A given an event B can be computed
using the (easier to compute) probabilities: P (B|A), P (B), and P (A). While this is the basis for the
ideas in Bayesian deep learning, we utilize a more application specific formulation of this theorem. In
our case, we define the parameters of our neural network to be Θ, the data that we are training on to
be D and Θ′ to be a component of the partition of Θ. So, the formula we utilize is:

P (Θ|D) =
P (Θ)P (D|Θ)

P (D)
=

P (Θ)P (D|Θ)∫
P (Θ′)P (D|Θ′)dΘ′ ∝ P (Θ)P (D|Θ)

Our task is to compute the posterior which represents the uncertainty about the parameters after
seeing the data. This leads us to the idea of epistemic uncertainty.

2.3.2 Epistemic Uncertainty

Epistemology concerns itself with the study of knowledge. Epistemic uncertainty follows this definition
and can be expressed as, “a lack of knowledge of a system of interest which can be reduced by
obtaining additional information.” [4] In our approach we use the Bayesian framework as represented
by the above equations to account for this uncertainty and take action to mitigate it. In theory, the
reparameterization of the model weights can accomplish this mitigation.

2.3.3 Aleatory Uncertainty

Aleatory means random or involving elements of random choice. “Aleatory uncertainty accounts for
the natural variation of inputs and parameters; it is irreducible and cannot be decreased with additional
knowledge.” [4] While we cannot mitigate this, we can still understand how it is affecting our model.

3 Methods

Here we outline several techniques that we tried in pursuit of acceptable results. They consist of the
the following: The derivation and implementation of a custom loss function via maximum likelihood
estimation, the reparameterization of the model weights, the dropping of portions of the input data,
phase folding, and the DFT on our input data.

3

3.1 Custom Loss Function

To obtain the variance on the model mean estimates for each target, we use a custom loss function.
With the assumption that we are trying to predict: p(y|x) for targets y and input data x. Recall that
before, the objective was to minimize mean squared error loss:

argmin
θ

1

N

∑
(x,y)

∥hθ(x)− y∥2 (1)

We are now doing maximum likelihood estimation (Derivation 1 in Appendix A.1):

argmax
θ

∏
(x,y)

pθ(y|x)1/N (2)

= argmin
θ

1

N

∑
(x,y)

(
log |Σθ(x)|+ (y − µθ(x))

TΣθ(x)
−1(y − µθ(x)

)
(3)

We make the assumption that the distribution defined by p(y|x) does not use unit variances. That
is the multivariate normal distribution has a learnable diagonal covariance matrix. This gives the
following equality (Derivation 2 in Appendix A.1):

argmin
θ

1

N

∑
(x,y)

(
log |Σθ(x)|+ (y − µθ(x))

TΣθ(x)
−1(y − µθ(x)

)
(4)

= argmin
θ

1

N

∑
(x,y)

(
k∑

i=1

log σθ(x)i +

k∑
i=1

(yi − µθ(x)i)
2/σθ(x)i

)
(5)

We take the output of our model to be: z = h(x) ∈ R14×2. We can get µ and σ with:

µθ(x) = z[:, :, 0] (6)

σθ(x) = exp (z[:, :, 1]) (7)

We exponentiate the second column of the output to ensure no values are negative. The network
should learn this but the standard deviations should be logged when they want to be interpreted. This
work results in the definition of a python class in Appendix A.2.

3.2 Model Weight Reparameterization

Another method we experimented with was the reparameterization of the model weights. This changes
the trained neural network from a deterministic model to a non-deterministic model through the
learning of two parameters in place of the traditional one. Specifically, the model learns the mean
and standard deviation of a distribution rather than a fixed parameter. Upon inference, the model
will sample from each of these learned distributions of parameters before conducting a forward pass
through the model as done with a traditional neural network. This was done using the IntelLabs©

Bayesian Torch library[5] [7]. This all yields a Bayesian Neural Network (BNN)

3.2.1 Experimental Setup

As seen in the following plot, we tried a few different models trained for varying amounts of time. A
short description of each is as follows:

• Baseline 1 25 is the baseline model which uses BossNetPlus architecture with MSE Loss

• bnn reparam initial trial is the BNN without MOPED (pre-training before further optimizing
with the reparameterized model) and with MSE loss

• BNN MOPED MSE is the bnn with MOPED and MSE loss

• ManyEpsBNNMOPED MSE is the same as BNN MOPED MSE but with more epochs

4

Figure 1: Median Dev R2 vs. Epoch

3.2.2 Results

From the figure, we can see the baseline outperforms the variations of the bnn we tried. Additionally,
the one to one plots had exceptionally poor performance when compared to the baseline. This led to
an abandonment of the idea under advisement from Professor Hutchinson.

3.3 Data Dropping

The initial versions of our model were trained using synthetic data, which provides us with complete
light curves, radial velocities, and metadata. Real data, however, is very sparse in comparison. Only a
small fraction of the light curves and other data is readily available to utilize. In order to prevent our
model from overfitting from our large and complete set of synthetic data, we mask our training data
to resemble that of the real data the model will handle in production. Our previous implementation
of data masking simply dropped entire rows of light curves. For example, for each batch, the model is
trained with a random twenty five of the 50 originally available light curves. Our final implementation
drops most entire light curves and radial velocities, and for the ones not completely dropped, a portion
of each of them will be masked out as well.

3.4 Phase Unfolding

The original observations of data we work with exhibit different cadences and the light curves have
different periods and duration of eclipses. This can lead to moments where there are very few data
points per eclipse. However, as you continue to observe these systems over long periods of time, you
build up phase coverage, which allows us to apply a modulo operation with the orbital period of a
system to produce a meaningful light curve. This is referred to as phase folding, and all the data we use
to train our models goes through this process. We believe that by reversing this process and using the
“unfolded” data will provide us with a better performing model due to the model’s new opportunity
to differentiate between data at different observed periods. Along with the possible performance
improvements that can be achieved, utilizing this phase unfolding technique allows astronomers to
leverage our model on a much larger array of data. This stems from the fact that some data does
not have a precise enough corresponding period value recorded to employ the phase folding technique
with. If our proposed method is correctly integrated, the prevalence of a precise period value will be
unnecessary to pass observations through our model.

5

3.4.1 Implementation

Our proposed method of implementation consists of several steps. For each light channel that is
not fully zeroed out by our data dropping methods we significantly up sample our original 512 data
points by interpolating between them. We then draw samples at random points in a period and time
within the range of time that all our samples span and assign corresponding time encodings to those
samples. We also assign a channel encoding to each sample to provide a method to differentiate
samples from separate channels. The goal of our process is to efficiently mimic samples that occur at
different cadences and points in time within countless slightly varying instances of periods over long
lengths of observation. The caveat with this method, however, is the requirement of shifting the model
architecture from a convolutional neural network into a transformer. This of course is due to the usage
of the time and channel encodings of which transformers are best fit for.

3.5 DFT Transformation

In this section, we detail the results of our use of the Discrete Fourier Transform on the features before
they were input to the model.

3.5.1 Preliminaries on the DFT

The DFT is a signal processing technique used to take a discrete (and in this case digital) signal and
provide a representation of the signal in the frequency domain. This can be used to provide a different
representation of the data input to the model, allowing it to learn different information.

Mathematically it is an operation on the elements of a sequence, defined:

Xk =

N−1∑
n=0

xne
−i2πkn

N (8)

for a sequence of length n, {xi}n−1
i=0 .

3.5.2 Experimental Setup

We compared three different instances of the DFT on the model inputs:

• Direct DFT, the DFT was directly applied to the input data. No original input was passed to
the model.

• Forward Concatenation, the transformed data was concatenated to the original before being
passed into the model. The norm 1

n was used.

• Orthonormal Concatenation, the transformed data was concatenated to the original input be-
fore being passed into the model. The norm 1√

n
was used which makes the fourier transform

orthonormal.

• Baseline, the input data was unaltered

We trained all methods for 10 epochs as we saw convergence occur within this training length. The
loss function in all trials was MSE.

6

3.5.3 Results

We now examine the figure showing median dev R2 scores, an indicator of performance on unseen
observations.

Figure 2: Median Dev R2 vs. Epoch

Each curve in the figure corresponds to one of the treatments outlined above as follows:

• Direct DFT - all data fft npaxis=1 (rust)

• Forward Concatenation - all data fft concat (blue)

• Orthonormal Concatenation - all data fft concat ortho (green)

• Baseline - all data train (teal)

From the figure we can see that the Baseline performs the best overall (R2 of 0.6), with the direct
DFT performing the second best overall (R2 of 0.52). We examine selected one to one plots on the
dev set after the model is fully trained to analyze the performance of the Direct DFT.

Figure 3: SMA - Baseline (left) & DFT (right)

Here we see the Direct DFT had better performance in predicting the SMA target than the untrans-
formed version.

7

Figure 4: VGamma - Baseline (left) & DFT (right)

As we can see in the VGamma one to one plot the Direct DFT has performance near that of predicting
the mean whereas the untransformed version is able to perform moderately well. This is potentially
due to the fourier transform removing temporal information. This experiment was fruitful as we
found that the Direct DFT can yield some performance gains over the untransformed data on certain
parameters. Still, the Direct DFT is unusable on some targets like VGamma. We also experimented
with concatenating the fourier transformed data to the untransformed data and then passing this into
the model. The results were mostly mediocre and are described well in the plot of R2 curves since no
single target one to one plots stood out.

3.6 Gauging Information Richness of Input Data

In this section, we examine the performance of the model when leaving out entire components of data.
It builds upon the techniques used in data dropping but is focused on what components of the input
data provide useful information in predicting the targets.

3.6.1 Experimental Setup

We examined several scenarios:

• No Light Curves, No Radial Velocities, Full Metadata - lcnone rvnone metafull (blue solid)

• No Light Curves, Full Radial Velocities, No Metadata - lcnone rvfull metanone (solid yellow)

• Full Light Curves, No Radial Velocities, No Metadata - lcfull rvnone metanone (magenta)

• No Light Curves, Sparse Radial Velocities, Sparse Metadata - lc0 rvsparse metasparse (grey)

• One Light Curve, Sparse Radial Velocities, Sparse Metadata - lc1 rvsparse metasparse (blue
dotted)

• No Light Curves Full Radial Velocities, Full Metadata - lc0 rvfull metafull (dotted yellow)

The sparse data is simply the data with some random dropping enabled to simulate inference in
production.

8

3.6.2 Results

Figure 5: Median Dev R2 vs. Epochs

From the figure, we can see that the No Light Curves, Full Radial Velocities, Full Metadata scenario
performed best with the highest R2 score at the end of the training period. We can also see that the
No Light Curves, No Radial Velocities, Full Metadata performed worst with the R2 curve not present
on the plot due to exceptionally low values. Additionally, the Full Light Curves, No Radial Velocities,
No Metadata scenario has the second lowest final R2 score with very erratic behavior during training.
These findings suggest that the light curves do not provide very much useful information in predicting
the targets. Selected one to one plots are displayed to further evaluate the information found in each
of the data sources.

Figure 6: Mass - Full Light Curves (left), Full Radial Velocities (center), Full Radial Velocities & Full
Metadata (right)

These figures display the performance of the model with different input data sources on the Mass
target. The model trained on all light curves and no other data has the worst performance (shown in
the leftmost plot). This can be discerned by the trend in the one to one plot which does not follow the
line y = x The model trained on only full radial velocity data (the center plot) has decent performance
but not the best as shown by the trend which follows the y = x line somewhat. Finally, the model
trained on the full radial velocities and full metadata has very good performance relative to the other
two as shown by the approximately linear trend in the one to one plot.
We now examine the difference between the models trained with some metadata, some radial velocities,
and either 0 or 1 randomly selected light curves. This was done under advisement by Professor
Hutchinson with the idea that one curve, if it is useful, should make a difference in the performance.

9

Figure 7: VGamma - 0 Light Curves (left), 1 Light Curve (right)

The above figures display sparse metadata and sparse radial velocities with either 0 or 1 light
curves. The conclusion that can be drawn from these plots is that the 0 light curves performs slightly
better if not the same due to the slightly higher R2 value displayed in the plot. Consequently, the
light curves likely do not provide very much (if any) useful information to the model in predicting the
targets.

4 Conclusion

4.1 Analysis of Results

Through our analyses we have been successful in experimenting with a novel model to predict stellar
parameters, and quantify the uncertainty of those predictions given light curve data. While there are
still many improvements to be made, the model itself functions relatively well on some parameters
given the small amount of time it requires to inference and train. Specifically, we found that the
Bayesian reparameterization of the model weights is not very applicable to this problem given the
poor performance. While, theoretically, it provided benefits to the construction of the model, in
practice it was ineffective. We find that the custom loss function is effective in practice. While it does
make the training procedure more volatile, it does yield benefits in that it regularizes the model during
training and provides more information on inference. Namely, the uncertainty of the predictions. The
data dropping slightly reduces performance but allows the model to be applied within the problem
domain it was designed for. The DFT allows the model to learn from new information that may have
been hard for it to obtain without, this helps performance on some parameters but hurts it on others,
as expected. Finally, the analysis of the information-richness of our input data leads to the conclusion
that the light curves provide little information relative to the radial velocities.

4.2 Future Work

Given the conclusions drawn in the preceding section, there are a few directions of exploration that
could prove fruitful. Specifically, the lack of usefulness of the light curves could inspire the design of
a model which places more weight on radial velocities. The lack of and sparsity of input data in the
problem space could prompt the use of interpolation methods to reconstruct the data before passing
it into the model as seen in the EBAI paper. Additional research on the application of the DFT to the
input data and how the model can use this data for some parameters and the original data for others
could be another direction. Finally, exploring the transformer architecture to allow for the analysis of
the effect of phase unfolding could be another fruitful direction of further inquiry.

10

References

[1] https://pytorch.org/docs/stable/index.html

[2] Conroy, K. E., Kochoska, A., Hey, D., Pablo, H., Hambleton, K. M., Jones, D., Giammarco,
J., Abdul-Masih, M., & Prša, A. (2020) Physics of Eclipsing Binaries. V. General Framework
for Solving the Inverse Problem The Astrophysical Journal Supplement Series, 250:34. American
Astronomical Society.

[3] Kevin P. Murphy (2023) Probabilistic Machine Learning, Kevin P. Murphy.

[4] N.W. Porter & V.A. Mousseau (2020) Understanding Aleatory and Epistemic Parameter Uncer-
tainty in Statistical Models, Sandia National Laboratories,

[5] J. -L. Lin et al., ”Quantization for Bayesian Deep Learning: Low-Precision Characterization
and Robustness,” 2023 IEEE International Symposium on Workload Characterization (IISWC),
Ghent, Belgium, 2023, pp. 180-192, doi: 10.1109/IISWC59245.2023.00020. keywords: Deep
learning;Uniform resource locators;Quantization (signal);Uncertainty;Codes;Computational mod-
eling;Neural networks,

[6] Krishnan, R., Subedar, M., & Tickoo, O. (2020). Specifying Weight Priors in Bayesian Deep Neural
Networks with Empirical Bayes. Proceedings of the AAAI Conference on Artificial Intelligence,
34(04), 4477-4484. https://doi.org/10.1609/aaai.v34i04.5875

[7] Prša, A., Guinan, E. F., Devinney, E. J., DeGeorge, M., Bradstreet, D. H., Giammarco, J. M.,
Alcock, C. R., & Engle, S. G. (2008). Artificial Intelligence Approach to the Determination of
Physical Properties of Eclipsing Binaries. I. The EBAI Project. arXiv:0807.1724.

11

A Appendix

A.1 Custom Loss Derivation

The following derivations come from the mixture density network document, created internally by
Professor Hutchinson.

Derivation 1:
We are now doing maximum likelihood estimation:

argmax
θ

∏
(x,y)

pθ(y|x)1/N (9)

= argmax
θ

1

N

∑
(x,y)

log pθ(y|x) (10)

= argmax
θ

1

N

∑
(x,y)

log

(
(2π)

k/2 |Σθ(x)|−1/2 exp

(
−1

2
(y − µθ(x))

TΣθ(x)
−1(y − µθ(x)

))
(11)

= argmax
θ

1

N

∑
(x,y)

log

(
|Σθ(x)|−1/2 exp

(
−1

2
(y − µθ(x))

TΣθ(x)
−1(y − µθ(x)

))
(12)

= argmax
θ

1

N

∑
(x,y)

(
log |Σθ(x)|−1/2 + log exp

(
−1

2
(y − µθ(x))

TΣθ(x)
−1(y − µθ(x)

))
(13)

= argmax
θ

1

N

∑
(x,y)

(
−1

2
log |Σθ(x)| −

1

2
(y − µθ(x))

TΣθ(x)
−1(y − µθ(x)

)
(14)

= argmin
θ

1

2N

∑
(x,y)

(
log |Σθ(x)|+ (y − µθ(x))

TΣθ(x)
−1(y − µθ(x)

)
(15)

= argmin
θ

1

N

∑
(x,y)

(
log |Σθ(x)|+ (y − µθ(x))

TΣθ(x)
−1(y − µθ(x)

)
(16)

Derivation 2:

argmin
θ

1

N

∑
(x,y)

(
log |Σθ(x)|+ (y − µθ(x))

TΣθ(x)
−1(y − µθ(x)

)
(17)

= argmin
θ

1

N

∑
(x,y)

(∑
i

log σθ(x)i + (y − µθ(x))
TΣθ(x)

−1(y − µθ(x))

)
(18)

= argmin
θ

1

N

∑
(x,y)

(∑
i

log σθ(x)i +
∑
i

(yi − µθ(x)i)
2Σ−1

θ(x)ii

)
(19)

= argmin
θ

1

N

∑
(x,y)

(∑
i

log σθ(x)i +
∑
i

(yi − µθ(x)i)
2σθ(x)

−1
i

)
(20)

= argmin
θ

1

N

∑
(x,y)

(
k∑

i=1

log σθ(x)i +

k∑
i=1

(yi − µθ(x)i)
2/σθ(x)i

)
(21)

12

A.2 Implementation of Custom Loss

New loss function

class DiagCovLoss(nn.Module):

"""

Implements the Diagonal covariance loss as shown in the overleaf doc

"""

def __init__(self, reset_std, reset_condition):

super(DiagCovLoss, self).__init__()

self.reset_std = reset_std # for reseting std threshold

self.reset_condition = reset_condition # for reseting std condition

def forward(self, model_output, targets):

"""

Inputs:

model_output -- the output vector of the model of shape (batch_size, num_targets, 2)

targets -- a vector of shape (batch_size, num_targets)

which correspond to the respective inputs

Outputs:

adjusted MSE for diagonal Cov for the MVG Dist

"""

mu_vector = model_output[:,:,0]

assert mu_vector.shape == targets.shape

sigma_vector = torch.exp(model_output[:,:,1])

condition = sigma_vector < self.reset_condition

sigma_vector[condition].data = self.reset_std*torch.ones_like(sigma_vector[condition])

loss = torch.sum(torch.log(sigma_vector), dim=1)

+ torch.sum(torch.div(torch.pow((targets - mu_vector), 2), sigma_vector), dim=1)

return loss.mean(dim=0)

Note that in the code, we check that the values of the standard deviations are not too small. That is,
we replace any values below some threshold with a larger value. This was done to remedy the problem
of vanishing gradients and numerical errors associated with taking the logarithm of 0. These are also
hyper parameters that we can tune.

13

	Introduction
	Literature Review
	PHOEBEphoebe
	Introduction and Scientific Goals
	Algorithmic Approach
	Estimators
	Optimizers and Samplers
	PHOEBE 2.3 Features and Future Plans

	The EBAI Project
	Methodology
	Data Pre-processing
	Results

	Bayesian Neural Networks
	Bayes Theorem
	Epistemic Uncertainty
	Aleatory Uncertainty

	Methods
	Custom Loss Function
	Model Weight Reparameterization
	Experimental Setup
	Results

	Data Dropping
	Phase Unfolding
	Implementation

	DFT Transformation
	Preliminaries on the DFT
	Experimental Setup
	Results

	Gauging Information Richness of Input Data
	Experimental Setup
	Results

	Conclusion
	Analysis of Results
	Future Work

	Appendix
	Custom Loss Derivation
	Implementation of Custom Loss

