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Motivating Example



Motivating Example

Consider the lengths of remission for leukemia patients under two
different control and test drugs (Maurya et al., 2011).

» Number of treatments: 4 (2 control drugs and 2 test drugs)
» Number of patients per treatment: 20

We could perform 6 all-pairwise comparisons of these control and
test drugs utilizing both the t-test and the Brunner-Munzel (BM)
test (Brunner and Munzel, 2000).



Histogram

Remission Time Histogram

Figure: Histograms of the two control drugs (C1 and C2) and two test
drugs (T1 and T2), showing skewness with some possible location shift.



Leukemia Data

Statistic Test Drug 1 (T1)

Test Drug 2 (T2)

Control Drug 1 (C1)

Control Drug 2 (C2)

Sample Size 20

20

20

20

Sample Mean 2.189 8.369 3.668 6.143
Sample Minimum 1.013 4.498 2.214 3.071
Sample Scale 1.176 3.871 1.454 3.072

Table: Summary of important statistics including the sample size, mean,
minimum, and scale for each treatment based on Maurya et al. (2011).

Observations:

» Sample Mean: T2 > C2>>C1>T1
» Sample Scale: 72> C2>>C1>T1




Parametric and Non-Parametric
Tests



Parametric Effect Size: Mean Difference

Let X ={Xq,..., Xny} ~ Fxand Y ={Y1,..., Y, } ~ Fy be
independent random samples from some continuous distributions
Fx and Fy with ux = E[X], uy = E[Y]], 0% = Var(X;), and
0% = Var(Y)).

Furthermore, let X, Y, S, and S2 be the sample means and
variances of X and Y, respectively.

Parametric Effect Size (Mean Difference): g = ux — py.

Sample Mean Difference: iy =X — Y.



Common Parametric Test: Welch's T-Test

To test Hy: ux — py = 0, we use Welch's test (heteroscedastic
t-test):
T — fld — pd

\/5)2(/nx+5 /ny

The distribution of T under Hy can be approximated by the
t-distribution with v+ degrees of freedom, where

(S%/nx + S¢/ny)?
Sx/[nk(nx — )] + Sy /[n5, (ny — 1)]

VT =



Non-Parametric Effect Size: Relative Effect

Relative Effect/Stochastic Superiority:
d =Pr(X; <Yj)+05Pr(X; =Y)).

For continuous distributions, d = Pr(X; < Yj) as Pr(X; = Y}) = 0.

Interpretation:
> d < 0.5: Fx is stochastically superior to Fy.
» d =0.5: Fx and Fy are stochastically equal.
» d > 0.5: Fx is stochastically inferior to Fy.



Estimating Relative Effect

First, combine X and Y, and convert it into ranks Rx and Ry.

Example: X =(0,3,2) and Y = (1, —5). Then,
(X,Y) =(0,3,2,1,—5) and the rank transformation gives
(2,5,4,3,1) so that Rx = (2,5,4) and Ry = (3,1).

Let Rx and Ry be the sample mean of the ranks from X and Y,
respectively.

Sample Relative Effect:

d= (ﬁy — ﬁx) + 0.5,

=2~

where N = nx + ny.



Common Non-Parametric Test: Brunner-Munzel Test

To test Hy: d = 0.5, we use the Brunner-Munzel test
(heteroscedastic Wilcoxon-Mann-Whitney test).
d—d

W = ,
\/sgx /nx + 83 /ny

where SE, and S,% are the sample variances of Var(Fy(X;)) and
Var(FX(Y))

The distribution of W under Hy can be approximated by the
t-distribution with vy degrees of freedom, where

(Sk./nv + Sk, /nx)?
S/ 1My (ny = D]+ Sk /[nk (nx = DT

vw =



Location-Scale Families



Location-Scale Families

Definition: Let X ~ Fx. Then, Fx is said to belong to
location-scale families if, for Z = (X — ux)/ox,

Fx'(P) = nx + oxF(p),
pe(0,1), ux € R, ox > 0.
Example #1: Normal Distribution Family N(ux,o%).

Example #2: Two-Parameter Exponential Distribution Family
Exp(Lx,0x), where Lx € R denotes the lower bound and 6x > 0
denotes the scale parameter.



Assumptions

Let X ~ Fx and Y ~ Fy, where Fx and Fy are assumed to
belong to the same location-scale family. Then,

Fi'(b) = ux + oxF5;(b) and Fy ' (b) = puy + oy F51(b)

for all b € (0,1), ux,ny € R, ox,0y > 0.



Our Research



The Test

The test we propose is one which combines the two effect size
measures discussed previously into one test. This seeks to quell the
controversy over which test to use.

» Combination of the two-sample t-test and Brunner-Munzel
test

» Detects a significant mean difference and/or deviation from
the stochastic equality

» Allows for an easier and powerful comparison between two
groups of a study



The Test

Let i, &, and 6x denote the maximum likelihood estimate (MLE)
of u=(uy — px)/ox, o = oy/ox, and ox, respectively. Further,
let Dp(p, o) and Kg(, o) denote functions which measure the
mean difference and stochastic inequality, respectively. Then, the
null hypothesis of our test is:

Hp: {,ud = 0} N {d = 0.5}7

We can test this using the joint test statistics,

/
6xDp(f1,6) GxKa(fl,5)
T>T2/: s = ;
( ! ) ( \/6'11/N VU22/N

which are asymptotically bivariate normal under Hp.




Our Research

Our research is ongoing.

» There is mathematical justification for this test (Noguchi et
al., 2023)

» Currently, we are evaluating its characteristics relative to the
t-test and Brunner-Munzel test

» This is done using a High-Throughput Computing
environment to run simulations



The Study

The simulation study we are conducting has a few main objectives,
focused on measuring the out-performance of the traditional tests
discussed earlier:

Robustness:

» The probability of falsely detecting a mean difference and/or
stochastic inequality when there is none.

» This is known as a Type | error rate or a false positive rate.
Power:

» The probability of correctly detecting a mean difference
and/or stochastic inequality when there is one.



The Study

Methods:

» We compare a variety of bootstrap methods to measure the
statistical significance and determine the best version of the
test.

» We utilize Western Washington University's College of Science
of Engineering computing cluster to run many jobs in parallel.

Goals:

» Where/how does our test perform better than the two-sample
t-test?
» The Brunner-Munzel test?



Bootstrap Overview

Bootstrapping is a resampling technique for computing p-values in
inferential statistics:

> A resample is created by taking observations from the sample
which respects the null hypothesis with replacement. Each
resample has the same sample size as the original sample.

> Many resamples are created and the test statistics are
computed from each resample.

P> These test statistics from the resamples approximate the
distribution of the test statistic under the null hypothesis.

» The p-value is computed by calculating the proportion of
these bootstrapped test statistics exceeding the original test
statistic.



Max-T Method

Overview
» Max-T looks at the maximum of n test statistics (n =2 in
our case, namely, | T1| and | T2|).
That is, we compute Tmax = max{|T1|, | T2|}.
» Bootstrapped Tmax Statistics are computed and the proportion
of bootstrapped Tmax Statistics exceeding the T« statistic
from the original data is the computed p-value.



Power Curve Plots
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Simulation Results

Our simulation study shows some promising results:

» The robustness of our test is reasonable at o« = 0.05 for the
two-parameter exponential distribution.

» On the other hand, our test tends to be liberal (> 0.05) for
the normal distribution, which needs to be addressed in the
future.

» Qur test tends to be way more powerful than the two-sample
t-test and the Brunner-Munzel test for the two-parameter
exponential distribution.



Further Remarks on the Simulation Study

A few comments on the future work:

| 4

>

Different bootstrap methods need be explored to ensure that
our test is robust under the normal distribution.

Note that our simulation set-up is for detecting a location shift
and/or a scale difference. However, our test is developed for
detecting a mean difference and/or relative effect (stochastic
superiority). Thus, a more relevant simulation design can help
us better understand the performance of our test.

Nevertheless, our test is a close analog to location-scale tests.
For our future work, we can compare our test to the
location-scale Cucconi test (Marozzi, 2009).



Thank You!
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