
Presentation 4
RL  Best Performance

Group: WiseGoose-IntrepidBeluga

Members: Nicholas Chandler, Raphael Bergner

01

02

Agenda

1. RL  QLearning
2. Review of Best Competitions
3. Conclusion

Nickʼs Approaches

Raphael
QLearning vs. XGBoost

Nick

RL  QLearning
● What is QLearning?
● QLearning seeks to find an optimal policy by maximization of the Q function:

QFunction

● The Q function tells us what the expected reward (given a policy) is at any
state, s, when an action, a, is taken.

● Arg Maximization of the Q function yields the optimal policy

● In order to maximize the Q function, we use the following update rule:

Update Rule

● In practice, we tabulate the state action pairs and store the Q values in
each cell of the table.

● Each update iterates over all state-action pairs

RL  QLearning
● Here we implemented QLearning applied to the dynamic pricing competition
● Essentially, we follow what was shown in class but expand the state set

● Action Set: Prices from 5 to 95 in increments of 5
● State Set Cartesian Product of the two):

○ Competitor prices from 10 to 90 in increments of 10
○ Units sold from 10 to 80 in increments of 10

● Reward: Revenue gained

● Episodes: 10
● Training Data: 1.8 million rows of DPC data

Decision Table →

RL  In DPC
● Basically, forecast the competitorʼs price ETS) and look up the nearest price value in the Q-table given our

units sold so far.
● Does not account for the stock of the competitor or the period in the season. This is future work but may

also need more competition data.

RL  DPC Results
● The results from 01/28 are as follows:
● The best revenue competition had the competitor pricing around a very high point with little variance
● The competition 4VSgxy was best with revenue: $386,520.00
● Competition 4vg7We was against Wise Goose… My teammate!
● From the price ACF plot we see strong correlation at small values of lags and slow tendency towards 0
● The residual heatmap shows we undershoot with our predictions

RL  DPC Results
● The results from 01/31. Best competition.

RL  DPC Results
● The results from 01/31. Worst competition.

○ Worst Revenue: $166,245.00
○ Best Revenue: $497,605.00

● Given the price ACF here, we should have been able to predict
better.

● This competitor seems to choose random values the first two
seasons and then stay at a price near $50 for the remainder.
○ In the past they actually tend to perform well.

Best Performance
● Given that there is a ranking present in the DPC, we utilize this to measure performance.

● Specifically, we look at all competitions where my user IntrepidBeluga) is in the top 10 and analyze trends.

● The dates are:
○ 20251020  Game Theoretic Approach
○ 20251117  LAD Demand Model
○ 20251210  Adversarial ETS
○ 20251217  Adversarial ETS
○ 20251222  Adversarial ETS
○ 20251231  Adversarial ETS
○ 20260126  Neural Network
○ 20260128  QLearning
○ 20260131  QLearning

● In the following the subset data frame refers to the data frame containing competitions from the best dates.

Best Performance

Best Performance
● The frequencies of competitors are given.

● We also see the distributions of price difference split on competitors.

Best Performance
● Here we examine the average price difference per time step.

● There is a larger difference where the competitor prices higher in the subset data frame .

Conclusions
● An approach to the next DPC season could be to send out a bunch of duopoly programs which explore

many data combinations and then train a strong RL agent on these data.

● Pricing under the competitor correlates with increased competition performance

● Simpler approaches tended to work best in my analysis.

● Even if the model is not completely correct, performance in the competition can still be good.

● Question: When will we know the results from the overall DPC?

Raphael

Data - cleaning
Cleaning rules

SOLD_OUT_PERIOD_CUTOFF = 80 # remove seasons where sould out before period 80

MIN_SOLD_PER_SEASON = 60 # remove seasons where less than 60 units sold

COMP_SOLDO_RATE_MIN = 0.10 # remove competition if competitor sold out in <10% seasons

COMP_SOLDO_RATE_MAX = 0.50 # remove competition if competitor sold out in >50% seasons

Data - additional features

def period_bin(p: pd.Series) -> pd.Series:

 # 1–20, 21–40, 41–60, 61–80, 81–100 -> labels 0..4

def stock_left_bin(stock_left: pd.Series) -> pd.Series:

 """

 Remaining stock bins: 80:60, 60:40, 40:20, 20:0.

 Encoded:

 0: (60,80]

 1: (40,60]

 2: (20,40]

 3: (0,20]

 """

QLearning - Parameters
price_values = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,

85, 90, 95, 100]

comp_price_values = [10, 20, 30, 40, 50, 60, 70, 80, 90]

period_bins = [0, 1, 2, 3, 4]

stock_left_bins = [0, 1, 2, 3, 4]

competitor_has_capacity_states = [0, 1]

Q-Learning parameters

alpha = 0.05

gamma = 0.95

episodes = 15

QLearning - Sparse
competitor_price_state,period_bin,stock_left_bin,competitor_has_capacity,optimal_price,q_value

10,1,0,0,5,0.0

10,1,0,1,25,127.68865873489413

10,1,1,0,5,0.0

10,1,1,1,5,19.719930113057888

10,1,2,0,5,0.0

10,1,2,1,5,0.0

10,1,3,0,5,0.0

10,1,3,1,5,0.0

10,1,4,0,5,0.0

10,1,4,1,5,0.0

10,2,0,0,5,0.0

10,2,0,1,5,96.6931099131614

QLearning - Sparse Interpolation
competitor_price_state,period_bin,stock_left_bin,competitor_has_capacity,optimal_price,q_value

10,1,0,0,25,176.69154059793834

10,1,0,1,25,176.69154059793834

10,1,1,0,65,189.00647274589065

10,1,1,1,5,70.0902720627384

10,1,2,0,80,314.0175746537975

10,1,2,1,5,62.107443587011446

10,1,3,0,70,206.40639564102287

10,1,3,1,5,61.310876358623254

10,1,4,0,70,180.8433309648089

10,1,4,1,5,62.02554753760482

10,2,0,0,70,151.48666970890943

10,2,0,1,25,151.0374369725856

XGBoost - Parameters

FEATURES_ALL = ["price_ratio", "price", "abs_diff", "competitor_has_capacity", "period_bin",

"stock_left_bin"]

TARGET = "revenue"

XGBoost - Policy
competitor_price_state,period_bin,stock_left_bin,competitor_has_capacity,optimal_price,q_value

10,1,0,0,80,124.410888671875

10,1,0,1,10,11.000563621520996

10,1,1,0,80,123.20475769042969

10,1,1,1,10,12.965852737426758

10,1,2,1,10,13.26574420928955

20,3,1,1,15,28.950151443481445

20,3,2,0,90,55.056846618652344

30,0,4,1,80,0.24119974672794342

30,1,0,0,100,114.553955078125

30,1,0,1,25,22.485570907592773

80,1,4,1,70,38.17103576660156

80,2,0,0,70,149.9051971435547

80,2,0,1,70,94.87784576416016

Model - Pricing

Model - Pricing

In Practice
2026020220260131

xgboost
xgboost
qlearnin
qlearnin
qlearnin qlearnin

xgboost
xgboost
qlearnin
qlearnin
qlearnin

In Practice
2026020220260131

xgboost
xgboost
qlearnin
qlearnin
qlearnin qlearnin

xgboost
xgboost
qlearnin
qlearnin
qlearnin

In Practice

In Practice

Thanks for the course

All models are wrong, but
some are useful

1976, George Box

