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RL - Q-Learning

e Whatis Q-Learning?

e Q-Learning seeks to find an optimal policy by maximization of the Q function:
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e The Q function tells us what the expected reward (given a policy) is at any
state, s, when an action, a, is taken.
e Arg Maximization of the Q function yields the optimal policy

e In order to maximize the Q function, we use the following update rule:

Q(s,a) < Q(s,a) + o(r + mﬁxQ(s',a’) — Q(s,a))

e In practice, we tabulate the state action pairs and store the Q values in
each cell of the table.
e Each update iterates over all state-action pairs




RL - Q-Learning

e Here we implemented Q-Learning applied to the dynamic pricing competition
e Essentially, we follow what was shown in class but expand the state set

e Action Set: Prices from 5 to 95 in increments of 5

e State Set (Cartesian Product of the two):
o  Competitor prices from 10 to 90 in increments of 10
o  Units sold from 10 to 80 in increments of 10

e Reward: Revenue gained

e Episodes: 10

e Training Data: 1.8 million rows of DPC data
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# Training the Q arning mode
for episode in range(episodes):
for idx in tqdm(range(len(df prices))):

t state and action fr

# map ved prices t ur discrete state & action space

competitor price = find closest( df prices.loc[idx, “"price competitor"], comp price values )
my price = find closest( df prices.loc[idx, "price"] )

units_raw = df_units_sold.loc[idx, "units sold"]
units_bin = find closest bin(units_raw, units_sold)

deﬁ\and = df _demand.loc[idx, "demand"]

state = (competitor price, units bin)

state idx = state index map[state]

action idx = price index map[my price]

reward = calculate reward(my price, demand)
the sa

# Get the best next action (staying in the same stat
best next action = np.max(q table[state idx])

q table[state idx, action idx] += alpha * (
| reward + gamma * best next action - q table[state idx, action idx]
)



RL - In DPC

e Basically, forecast the competitor's price (ETS) and look up the nearest price value in the Q-table given our

units sold so far.
e Does not account for the stock of the competitor or the period in the season. This is future work but may

also need more competition data.

# --- Find closest state in (Q-table
closest key = find closest state(comp price, units sold so far)

# --- Lookup optimal price from Q-table ---
best price = q price lookup.get(closest key, BASE PRICE)




RL - DPC Results

The results from 01/28 are as follows:
The best revenue competition had the competitor pricing around a very high point with little variance
The competition 4VSgxy was best with revenue: $386,520.00

Competition 4vg7We was against Wise Goose... My teammate!

From the price ACF plot we see strong correlation at small values of lags and slow tendency towards O
The residual heatmap shows we undershoot with our predictions
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RL - DPC Results

The results from 01/31. Best competition.
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RL - DPC Results

e The results from 01/31. Worst competition.
o  Worst Revenue: $166,245.00
o Best Revenue: $497,605.00
e Given the price ACF here, we should have been able to predict
better.
e This competitor seems to choose random values the first two
seasons and then stay at a price near $50 for the remainder.
o Inthe past they actually tend to perform well.
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Best Performance

e Given that there is a ranking present in the DPC, we utilize this to measure performance.
e Specifically, we look at all competitions where my user (IntrepidBeluga) is in the top 10 and analyze trends.

e The dates are:

2025-10-20 - Game Theoretic Approach
2025-11-17 - LAD Demand Model
2025-12-10 - Adversarial ETS
2025-12-17 - Adversarial ETS
2025-12-22 - Adversarial ETS
2025-12-31 - Adversarial ETS
2026-01-26 - Neural Network
2026-01-28 - Q-Learning

2026-01-31 - Q-Learning

0O O 0O O 0 O O O O

e Inthe following the subset data frame refers to the data frame containing competitions from the best dates.




Best Performance

Demand vs Price Difference - Subset DF Demand vs Price vs Competitor Price - Subset DF
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Best Performance

e The frequencies of competitors are given.

e We also see the distributions of price difference split on competitors.

competitor_id num_unique_competitions Price Difference Distribution per Competitor - Subset DF
0 RustlingNightingale 6
1 LoutishMacaque 4 i
2 LoutishWorm 4 c:-f
3 IncredibleDogfish 3 %
4 LittleMarmoset 3 g
5 AdaptableCrane 2 j
6 AwesomeGrasshopper 2 §
7  FuturisticSalamander 2 z
8 NoisyMammoth 2 §
9 DidacticFlounder 2 é
10 StraightChameleon 2 @
11 ValiantTeal 2 &
12 ObservantBeluga 2
13 RussetBat 2
14 WiseGoose 2
15 ZealousMosquito 2
16 FearlessFinch 1
17 ImpartialGoldfish 1 Competitor




Best Performance

e Here we examine the average price difference per time step.

There is a larger difference where the competitor prices higher in the subset data frame .

Average Price Difference over Selling Period - Full DF Average Price Difference over Selling Period - Subset DF
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Conclusions

e An approach to the next DPC season could be to send out a bunch of duopoly programs which explore
many data combinations and then train a strong RL agent on these data.

e Pricing under the competitor correlates with increased competition performance
e Simpler approaches tended to work best in my analysis.
e Even if the model is not completely correct, performance in the competition can still be good.

° When will we know the results from the overall DPC?
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Data - cleaning

# Cleaning rules

SOLD_OUT PERIOD CUTOFF

MIN_ SOLD PER_SEASON
COMP_SOLDO RATE MIN
COMP_SOLDO RATE_MAX

= 80
60
0.10
0.50

4= H= 3

remove

remove

remove

remove

seasons where sould out before period
seasons where less than 60 units sold
competition if competitor sold out in

competition if competitor sold out in

80

<10%
>50%

seasons

seasons




Data - additional features

def period bin(p: pd.Series) -> pd.Series:
# 1-20, 21-40, 41-60, 61-80, 81-100 -> labels 0..4

def stock left bin(stock left: pd.Series) -> pd.Series:

mwman

Remaining stock bins: 80:60, 60:40, 40:20, 20:0.

Encoded:
0: (60,80]
1: (40,60]
2: (20,40]

3: (0,20]

won




QLearning - Parameters

price values = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
85, 90, 95, 100]

comp price values = [10, 20, 30, 40, 50, 60, 70, 80, 90]
period bins = [0, 1, 2, 3, 4]
stock left bins = [0, 1, 2, 3, 4]

competitor has capacity states = [0, 1]

# Q-Learning parameters

0.05

alpha
gamma = 0.95

episodes = 15




QLearning - Sparse

competitor price state,period bin,stock left bin,competitor has capacity,optimal price,gq value
10,1,0,0,5,0.0

10,1,0,1,25,127.68865873489413

10 bl 007 5, 0] 5

10,1,1,1,5,19.719930113057888

10,1,2,0,5,0-
10,1,2,1,5,0
10080 S 07 5 (0
10,1,3,1,5,0.
10,1,4,0,5,0.
10,1,4,1,5,0.
10), 2,05 075, (0)
10,2,0,1,5,96.6931099131614
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QLearning - Sparse Interpolation

competitor price state,period bin,stock left bin,competitor has capacity,optimal price,gq value
10,1,0,0,25,176.69154059793834
10,1,0,1,25,176.69154059793834
10,1,1,0,65,189.00647274589065
10,1,1,1,5,70.0902720627384
10,1,2,0,80,314.0175746537975
10,1,2,1,5,62.107443587011446
10,1,3,0,70,206.40639564102287
10,1,3,1,5,61.310876358623254
10,1,4,0,70,180.8433309648089
10,1,4,1,5,62.02554753760482
10,2,0,0,70,151.48666970890943
10,2,0,1,25,151.0374369725856




XGBoost - Parameters

FEATURES ALL = ["price ratio", "price", "abs diff", "competitor has capacity", "period bin",
"stock left bin"]

TARGET = "revenue"




XGBoost - Policy

competitor price state,period bin,stock left bin,competitor has capacity,optimal price,q value
10,1,0,0,80,124.410888671875
10,1,0,1,10,11.000563621520996
10,1,1,0,80,123.20475769042969
10,1,1,1,10,12.965852737426758
10,1,2,1,10,13.26574420928955
20,3,1,1,15,28.950151443481445
20,3,2,0,90,55.056846618652344
30,0,4,1,80,0.24119974672794342
30,1,0,0,100,114.553955078125
30,1,0,1,25,22.485570907592773
80,1,4,1,70,38.17103576660156
80,2,0,0,70,149.9051971435547
80,2,0,1,70,94.87784576416016




Model - Pricing

Distribution of chosen prices

Q-learning
XGBoost

40 60
chosen price




Model - Pricing

Chosen prices when competitor is OUT of stock (capacity = 0) Chosen prices when competitor HAS capacity (capacity = 1)
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In Practice

2026-01-31 2026-02-02

Overall Utilization Curves by Competition Overall Utilization Curves by Competition
34A0jN  glearnin J i 3GsoFv  glearnin
48UfHp 3K4Ynk

9Lar6d 5 303aZ8 $
EkXw5d Xgboost 3r8gz8  glearnin
NXTXt9 Xgboost -~ g 7ucocp (learnin

W2yHwH qlearnin
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In Practice

2026-01-31 2026-02-02
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In Practice

Mean vs Median Avg Competition Revenue by Model
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In Practice

Avg Competition Revenue Histogram (Overlay)
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Thanks for the course




All models are wrong, but
some are useful

1976, George Box




