Presentation 4
RL + Best Performance

Group: WiseGoose-IntrepidBeluga

Members: Nicholas Chandler, Raphael Bergner

Agenda

oty Nick's Approaches

1. RL - Q-LearningC N
2. Review of Best Competitions
3. Conclusion

022 Raphael

Q-Learning vs. XGBoost

Nick

RL - Q-Learning

e Whatis Q-Learning?

e Q-Learning seeks to find an optimal policy by maximization of the Q function:

oo
Q" (s,a) =Ex |iz Y're | s0 = 8, ap = (11

t=0

e The Q function tells us what the expected reward (given a policy) is at any
state, s, when an action, a, is taken.
e Arg Maximization of the Q function yields the optimal policy

e In order to maximize the Q function, we use the following update rule:

Q(s,a) < Q(s,a) + o(r + mﬁxQ(s',a’) — Q(s,a))

e In practice, we tabulate the state action pairs and store the Q values in
each cell of the table.
e Each update iterates over all state-action pairs

RL - Q-Learning

e Here we implemented Q-Learning applied to the dynamic pricing competition
e Essentially, we follow what was shown in class but expand the state set

e Action Set: Prices from 5 to 95 in increments of 5

e State Set (Cartesian Product of the two):
o Competitor prices from 10 to 90 in increments of 10
o Units sold from 10 to 80 in increments of 10

e Reward: Revenue gained

e Episodes: 10

e Training Data: 1.8 million rows of DPC data

i s W N = o

67
68
69
70
7

competitor_price units_sold_bin optimal_price

10
10
10
10
10
90
90
90
90
90

10
20
30
40
50

40
50
60
70
80

20
70
75
25
65
70
60
75
60
65

Training the Q arning mode
for episode in range(episodes):
for idx in tqdm(range(len(df prices))):

t state and action fr

map ved prices t ur discrete state & action space

competitor price = find closest(df prices.loc[idx, “"price competitor"], comp price values)
my price = find closest(df prices.loc[idx, "price"])

units_raw = df_units_sold.loc[idx, "units sold"]
units_bin = find closest bin(units_raw, units_sold)

deﬁ\and = df _demand.loc[idx, "demand"]

state = (competitor price, units bin)

state idx = state index map[state]

action idx = price index map[my price]

reward = calculate reward(my price, demand)
the sa

Get the best next action (staying in the same stat
best next action = np.max(q table[state idx])

q table[state idx, action idx] += alpha * (
| reward + gamma * best next action - q table[state idx, action idx]
)

RL - In DPC

e Basically, forecast the competitor's price (ETS) and look up the nearest price value in the Q-table given our

units sold so far.
e Does not account for the stock of the competitor or the period in the season. This is future work but may

also need more competition data.

--- Find closest state in (Q-table
closest key = find closest state(comp price, units sold so far)

--- Lookup optimal price from Q-table ---
best price = q price lookup.get(closest key, BASE PRICE)

RL - DPC Results

The results from 01/28 are as follows:
The best revenue competition had the competitor pricing around a very high point with little variance
The competition 4VSgxy was best with revenue: $386,520.00

Competition 4vg7We was against Wise Goose... My teammate!

From the price ACF plot we see strong correlation at small values of lags and slow tendency towards O
The residual heatmap shows we undershoot with our predictions

revenue Average Price over Time — Competition 4VSgxy

1 sell out
Competitor sells out
Competitor Avg Price +15D

My Avg Price £1SD

12 3 4 5 6 7 8 9 L W oL 1 o

4 IntrepidBeluga ‘ §

RL - DPC Results

The results from 01/31. Best competition.

revenue Average Price over Time — Competition 3b9fHH Price Autocorrelation (ACF) - Competitor DidacticFlounder - Competition 3b9fHH
I sell out

Competitor Avg Price +15D
My Avg Price £1SD

3

]
iz
]
!

- 6t 10 11 12 13 14 15 16 17 18 19 20
Selling Period Lag

Residuals Heatmap - DidacticFlounder (RMSE: 15.411) Residual ACF Heatmap - DidacticFlounder Demand Surface

979389858177

979389858177 73696561

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Lag

IntrepidBeluga $254,028 : $15.00 §75.00 $49.36

RL - DPC Results

e The results from 01/31. Worst competition.
o Worst Revenue: $166,245.00
o Best Revenue: $497,605.00
e Given the price ACF here, we should have been able to predict
better.
e This competitor seems to choose random values the first two
seasons and then stay at a price near $50 for the remainder.
o Inthe past they actually tend to perform well.

Price Autocorrelation (ACF) - Competitor ImpartialGoldfish - Competition 3VRFUE

)
5
a8
&
"

AVerage Price over Time — COn’]petitiOn 3VRFUE Residuals Heatmap - ImpartialGoldfish (RMSE: 19.373) Residua

Competitor Avg Price 15D
My Avg Price +1SD

Selling Period

Best Performance

e Given that there is a ranking present in the DPC, we utilize this to measure performance.
e Specifically, we look at all competitions where my user (IntrepidBeluga) is in the top 10 and analyze trends.

e The dates are:

2025-10-20 - Game Theoretic Approach
2025-11-17 - LAD Demand Model
2025-12-10 - Adversarial ETS
2025-12-17 - Adversarial ETS
2025-12-22 - Adversarial ETS
2025-12-31 - Adversarial ETS
2026-01-26 - Neural Network
2026-01-28 - Q-Learning

2026-01-31 - Q-Learning

0O O 0O O 0 O O O O

e Inthe following the subset data frame refers to the data frame containing competitions from the best dates.

Best Performance

Demand vs Price Difference - Subset DF Demand vs Price vs Competitor Price - Subset DF

Mean Demand

Mean Demand

Demand - Avg
&

-100 =50
Price Difference (my price - competitor's price)

Demand vs Price vs Competitor Price - Full DF

Mean Demand

°
w

<
<
n
c
g\
=4
B:
©
£
o
(=]

Price Difference (my price - competitor's price)

Best Performance

e The frequencies of competitors are given.

e We also see the distributions of price difference split on competitors.

competitor_id num_unique_competitions Price Difference Distribution per Competitor - Subset DF
0 RustlingNightingale 6
1 LoutishMacaque 4 i
2 LoutishWorm 4 c:-f
3 IncredibleDogfish 3 %
4 LittleMarmoset 3 g
5 AdaptableCrane 2 j
6 AwesomeGrasshopper 2 §
7 FuturisticSalamander 2 z
8 NoisyMammoth 2 §
9 DidacticFlounder 2 é
10 StraightChameleon 2 @
11 ValiantTeal 2 &
12 ObservantBeluga 2
13 RussetBat 2
14 WiseGoose 2
15 ZealousMosquito 2
16 FearlessFinch 1
17 ImpartialGoldfish 1 Competitor

Best Performance

e Here we examine the average price difference per time step.

There is a larger difference where the competitor prices higher in the subset data frame .

Average Price Difference over Selling Period - Full DF Average Price Difference over Selling Period - Subset DF

o o
2 o
a [
e "
o o
s s
= o
[[
Q. Q.
£ £
o o
o o
(7] [
g g
‘= =
a a
> >
= =
(7] [
g g
4 =
[[
o o
O (X
£ £
(=] o
[Q
g g
= =
a o

Mean Price Difference Mean Price Difference
+1 Std Dev +1 Std Dev
No Difference No Difference

60

Selling Period Selling Period

Conclusions

e An approach to the next DPC season could be to send out a bunch of duopoly programs which explore
many data combinations and then train a strong RL agent on these data.

e Pricing under the competitor correlates with increased competition performance
e Simpler approaches tended to work best in my analysis.
e Even if the model is not completely correct, performance in the competition can still be good.

° When will we know the results from the overall DPC?

Raphael

Data - cleaning

Cleaning rules

SOLD_OUT PERIOD CUTOFF

MIN_ SOLD PER_SEASON
COMP_SOLDO RATE MIN
COMP_SOLDO RATE_MAX

= 80
60
0.10
0.50

4= H= 3

remove

remove

remove

remove

seasons where sould out before period
seasons where less than 60 units sold
competition if competitor sold out in

competition if competitor sold out in

80

<10%
>50%

seasons

seasons

Data - additional features

def period bin(p: pd.Series) -> pd.Series:
1-20, 21-40, 41-60, 61-80, 81-100 -> labels 0..4

def stock left bin(stock left: pd.Series) -> pd.Series:

mwman

Remaining stock bins: 80:60, 60:40, 40:20, 20:0.

Encoded:
0: (60,80]
1: (40,60]
2: (20,40]

3: (0,20]

won

QLearning - Parameters

price values = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
85, 90, 95, 100]

comp price values = [10, 20, 30, 40, 50, 60, 70, 80, 90]
period bins = [0, 1, 2, 3, 4]
stock left bins = [0, 1, 2, 3, 4]

competitor has capacity states = [0, 1]

Q-Learning parameters

0.05

alpha
gamma = 0.95

episodes = 15

QLearning - Sparse

competitor price state,period bin,stock left bin,competitor has capacity,optimal price,gq value
10,1,0,0,5,0.0

10,1,0,1,25,127.68865873489413

10 bl 007 5, 0] 5

10,1,1,1,5,19.719930113057888

10,1,2,0,5,0-
10,1,2,1,5,0
10080 S 07 5 (0
10,1,3,1,5,0.
10,1,4,0,5,0.
10,1,4,1,5,0.
10), 2,05 075, (0)
10,2,0,1,5,96.6931099131614

o O O O o o o

QLearning - Sparse Interpolation

competitor price state,period bin,stock left bin,competitor has capacity,optimal price,gq value
10,1,0,0,25,176.69154059793834
10,1,0,1,25,176.69154059793834
10,1,1,0,65,189.00647274589065
10,1,1,1,5,70.0902720627384
10,1,2,0,80,314.0175746537975
10,1,2,1,5,62.107443587011446
10,1,3,0,70,206.40639564102287
10,1,3,1,5,61.310876358623254
10,1,4,0,70,180.8433309648089
10,1,4,1,5,62.02554753760482
10,2,0,0,70,151.48666970890943
10,2,0,1,25,151.0374369725856

XGBoost - Parameters

FEATURES ALL = ["price ratio", "price", "abs diff", "competitor has capacity", "period bin",
"stock left bin"]

TARGET = "revenue"

XGBoost - Policy

competitor price state,period bin,stock left bin,competitor has capacity,optimal price,q value
10,1,0,0,80,124.410888671875
10,1,0,1,10,11.000563621520996
10,1,1,0,80,123.20475769042969
10,1,1,1,10,12.965852737426758
10,1,2,1,10,13.26574420928955
20,3,1,1,15,28.950151443481445
20,3,2,0,90,55.056846618652344
30,0,4,1,80,0.24119974672794342
30,1,0,0,100,114.553955078125
30,1,0,1,25,22.485570907592773
80,1,4,1,70,38.17103576660156
80,2,0,0,70,149.9051971435547
80,2,0,1,70,94.87784576416016

Model - Pricing

Distribution of chosen prices

Q-learning
XGBoost

40 60
chosen price

Model - Pricing

Chosen prices when competitor is OUT of stock (capacity = 0) Chosen prices when competitor HAS capacity (capacity = 1)

T

chosen price
chosen price

T |

Q-learning XGBoost Q-learning XGBoost

In Practice

2026-01-31 2026-02-02

Overall Utilization Curves by Competition Overall Utilization Curves by Competition
34A0jN glearnin J i 3GsoFv glearnin
48UfHp 3K4Ynk

9Lar6d 5 303aZ8 $
EkXw5d Xgboost 3r8gz8 glearnin
NXTXt9 Xgboost -~ g 7ucocp (learnin

W2yHwH qlearnin

Cumulative demand (normalized)

=l
@
N
©
£
E
5}
<
k-]
c
©
£
[}
©
[}
>
=]
©
3
£
S
(o]

40 60 40 60
selling_period

selling_period

In Practice

2026-01-31 2026-02-02

Overall Utilization Curves by Competition Overall Utilization Curves by Competition

34A0jN glearnin - i 3GsoFv glearnin
48UfHp 3K4Ynk
9Lar6d Z 303aZ8
Ekxwsd Xgboost 3r8gz8 glearnin
NXTXt9 Xgboost — g 7ucocp Qlearnin

W2yHwH qlearnin

Cumulative demand (normalized)

=l
@
N
©
£
E
5}
<
k-]
c
©
£
[}
©
[}
>
=]
©
3
£
S
(o]

60 40 60
selling_period selling_period

In Practice

Mean vs Median Avg Competition Revenue by Model

Il Mean

Median
175000

150000
125000

100000

c
o
2
2
]
o
£
o
(9
—
9]
Q
o
=
c
]
>
]
—_
S
<

q_policy_5d xgb_policy

In Practice

Avg Competition Revenue Histogram (Overlay)

g_policy_5d
xgb_policy

T T T T T
100000 150000 200000 250000 300000
Avg revenue per competition

Thanks for the course

All models are wrong, but
some are useful

1976, George Box

