Presentation 3

ML

Group: WiseGoose-IntrepidBeluga

Members: Nicholas Chandler, Raphael Bergner




Agenda

o1y Nick's Approaches

21. ,Ie/lcll_dressing the Competitor
3. Overall Analysis

022 Raphael

1. ML




Nick




Time Series - Adversarial Pricing

# Predict 2% lower than the competitor:
if competitor has capacity current period in current season:
price = 0.98 * comp price

e If the competitor is in stock:
o Price 2% lower than the predicted
competitor next price.

ghtly based on remaining inventory vs expected inver

% 3

If rstocked, reduce price mor faster

if rat16 > 1:
adjustment_factor = AGGRESSIVENESS * (ratio - 1)

(] If they’re not: price *= (1 - adjustment factor)
o Do basic inventory management

assuming we want to sell evenly

VENESS * (ratio - 1))

smooth trend: increase slightl (ti

time factor = 0.1 * (selling period in_current_season / T SEASON)
price *= (1 + time factor)*MONOPOLY MARKUP

y as the season goes on

if selliné period in current season < 5:
price = 80

price = float(round(min(max(price, MIN PRICE), MAX PRICE), 2))
return price, new _info

y to get the comp to go high at the beginning in case we have to f

ime-based upward drift




Time Series - Autocorrelation Plots

e Autocorrelation Definition: Cov(X¢, Xt—1)
pk) = —(—F-— =
Var(X;)

e How to read the plots:

o  Sign:
m Positive: Prices continue in same direction e ——————
m  Negative: Oscillatory behavior

o  Magnitude:

m  Near +1/-1: Strong dependence between values
m  Near O: Weak dependence
o Lag Number:
m  Short Lag: Immediate reactions
m  Medium Lag: Slow adjustment patterns
o Decay Pattern (of magnitude):
m  Slow-decaying Positive: Follows trend
m Alternating Signs: Oscillation / Undercutting e
m Rapid Decay: Mostly random behavior R

-
n
=)
)
ju]
~
o
n
o
)
I
m
Il
~
"
-
0
<
Y
&
® m
n
~
I
©
n
©
@
©
0
R
~
IN
©
n
©
@
©
m
@
~
Y




Time Series - Adversarial Pricing

Residuals Heatmap - IncredibleDogfish (RMSE: 33.564) Residual ACF Heatmap - IncredibleDogfish

Season

o
a
B
N
o
&
!
b
g
0
<
@
2
I
~
5
o
o
&
3
Q
~
=
@
"
@
a
8
m
@
~
5

selling Period

Price Autocorrelation (ACF) - Competitor IncredibleDogfish - Competition 34mM6C Average Price over Time - Competition 34mM6C

® Competitor Avg Price +1SD
® My Avg Price +1SD

979389858177 736965615753 49454137332925211713 9 5 1
Average Price

40 C

Selling Period

IntrepidBeluga 51, 55 $488,316 : $1.00 $100.00 $69.05




Time Series - Adversarial Pricing

Residuals Heatmap - ObservantBeluga (RMSE: 52.998) Residual ACF Heatmap - ObservantBeluga
T

Season

979389858177 73696561 57 53 49 45413733 29252117 1.
141

da [ il

L

d L i
1 a1kl
979389858177 7369656157 5349454137332925211713 9 5 1

|
100 - "l

|

97 |

Selling Period

Price Autocorrelation (ACF) - Competitor ObservantBeluga - Competition 42LsLz Average Price over Time - Competition 42Lslz

® Competitor Avg Price £1SD
® My Avg Price £1SD

s o g g

979389858177 736965615753 49454137332925211713 9 5 1

A €

Selling Period

IntrepidBeluga $1.00 $100.00




Time Series - Adversarial Pricing

Residuals Heatmap - ObservantBeluga (RMSE: 18.453) Residual ACF Heatmap - ObservantBeluga

o o
o o
5 5
5 &
a 2
2 3
3 B
5 5
g g
2 2
@ <8
2 S
2 o
?- §81
= =
5 5
2 g
8 8
H 8
8 2
R R
R R
H H
2 8
8 8
e S
3 3
2 2
3 3
5 5

Selling Period

Price Autocorrelation (ACF) - Competitor ObservantBeluga - Competition 470oLkH Average Price over Time - Competition 47oLkH

' ® Competitor Avg Price +1SD
“ H Il ® My Avg Price £1SD
L] |

L
‘.

AI\ ‘I.I‘

Tll

L

Average Price

L I

979389858177 736965615753 49454137332925211713 9 5 1

4( 0

Selling Period

IntrepidBeluga K 5 $488,316 ; $1.00 $100.00 $69.05




1ple

IC

<
]
c
[
]
)
2
o
o
o
|
a
o
£
©
Q
T
w
"]
<
©
£
2
rl
Q
<

Average Price over Time - Competition U39KGp
Selling Period

® Competitor Avg Price £1SD

® My Avg Price +1SD

100 -

9011d abeiany

n o
N S
oS S

T G 6 ELLITZST6Z EELE Tt Sb 6 €S LSTISI69 €L LLTBSBE8E6 L6
uoseas

-
an
(O
—
(O
N
—
)
>
©O
<
I

S .
Residuals Heatmap - FearlessFinch (RMSE: 26.111)
selling Period

ime

Price Autocorrelation (ACF) - Competitor FearlessFinch - Competition U39KGp

IntrepidBeluga

T

€T LTTZ ST 6T €€ LE Th S 61 €S LS T9G969 €L LLTB8SB 68 €6 L6 T S 6 ETLITZSTOZEE LETY Sh6b ESLSTISI69EL LLTBSB68EGLE
uoseas uoseas




XGBoost

e Data (Same total set as Raph):
o 1890000 periods of competitions from Raph and I.
o Last 20 competitions are held out for the test set.

e Features:
o 29 features including
m  Competitor stock
m Lagged/Rolling means and std. devs of columns from competition details
m  Rolling correlations between prices
m Price difference
e Training Pipeline:
o  5-Fold Cross Validated Random Search for 30 trials

e Best Model:
o Best RMSE: 0.7373
o Best parameters: {'subsample': 0.6, 'reg_lambda': 1.5, 'reg_alpha': O, 'n_estimators': 300,
'min_child_weight': 3, 'max_depth': 9, 'learning_rate': 0.1, 'colsample_bytree': 0.8}




Global Feature Importance (mean |[SHAP|)

)
)
O
C
O
)
-
O
QO
&
O
-
-
)
qV)
)
LL

[anjea dvHs| uesp

XGBoost -

uoseas bul||as

€ be| puewsap

1 he| =2oud

1 6e| 10ynadwod 2oud

Z bej i0nadwod 2oud

Z be| =aoud

¢ be| 1oyadwod aoud

¢ he| =oud

1 he| puewap

Z be| puewap

p3s~ buljjol10332dwod oud
ueaw buljjos 10332dwod aoud
p3s buljjol 2o1d

Joynadwod aoud

p1s~Buljjos puewap

ueaw bujjjos aoud
wnswn)” puewsap

pouad buljjas

32031s ul Joji3adwod

3203 ul Jojedwod uaym aoud
2oud

wns” Buljjos puewsap

ueaw Buljjol puewap

H#ip-2oud




XGBoost - Model Performance

Hexbin one-to-one plot Test Metrics:

o MSE: 0.6348

o MAE: 0.5463

o R-Squared: 0.1515
o RMSE: 0.7967

Interpretation: The model mispredicts demand by
approximately 0.7967 on average.

Consensus: Not very good... But wait!

o
=
I
£
)

o

o
@

2

2

©
9]
<

o

True demand




XGBoost

The model was far too big at 48Mb...

So we need another approach.

We also switch to JSON at this point too.




XGBoost

2 5 4
oOm i)
c = ©
..en ms
7
50T S =
e c
SEEgO n o
o e O (OIN7)}
admvm.”:rr
Qocovgp?o
- Lo
oaxrxo=>ELL
)
[T -
o o
® O © o NO O
wn wn
° °

uoseas” Bul||as

€ be| puewap

1 be| aoud

1 be| 1o33adwod 2oud

Z be| 10339dwod @oud

Z be| =2oud

€ be| 1033adwod adud

€ be| aoud

1 be| puewap

Z be| puewap

p3s Buijjos 103139dwod 9d1d

ueaw  buljjol 103nadwod aoud

Jo3adwod 9dud

pas buljjol puewasp

ueaw buljjos 2oud

o
<
I
CL
c
@
]
£
]
|9}
c
[
§
5]
a
E
]
A
S
2
©
(9]
w
©
Q
o
O

wnswny puewsap

pouad buljjss
3203s” Ul Joj3dwod

32035 Ul Joj3edwod” uaym aoud
ERINe]

wns”buijjos” puewap

ueaw buljjol puewap

ip~aoud

[anjea dvHs| uespy




XGBoost

e XGB with fewer features

Hexbin one-to-one plot

e  Still CV HPO using random strategy for 10 trials.
e Training Results:

o Test RMSE: 0.7931

o TestR-Squared: 15.92%

e Still not great in terms of performance

o
c
@
£
(9]

o

o
o
b

2

S
@
| =

o

e Feature engineering and a stronger model didn't
make a massive difference in my setup

e Interestingly, the SHAP analysis seemed to be
correct since the elimination of ~20 features
didn't bring down performance.

True demand




XGBoost

e Inthis, there was a predetermined selling model where a target demand was aimed for.

e We tried 15 different prices in the ML model for demand to see which had the highest price at the target
demand

e Onalow demand day we did alright

Average Price over Time - Competition vgnmfx Average Price over Time - Competition X Average Price over Time - Competitio

é co

Average Price over Time - Competition 3uqQRp

A

IntrepidBeluga $380,280 $63,380 $1.00 $94.80




NN

e Made a small NN, done with less data to speed up training, same pipeline as XGB

Parameters: {'hidden_dim': 20, 'n_layers': 2, 'dropout': 0.0772, 'Ir': 0.00595, 'batch_size': 512}
e Performance (offline data):

o Test RMSE: 0.6916
o Test MAE: 0.5518
o Test R-Squared: 0.0054

Hexbin one-to-one plot

mse = mean squared error(y test, y pred)
mae = mean absolute error(y test, y pred)
rmse = np.sqrt(mse)

2 ey r2 = r2 score(y test, y pred)




NN

e Interesting revenue distribution
e There was also decent selling out
e The good competitions are kind of curious given the poor fit of the NN

capacity utilization (cumulative sales) curves of all selling seasons
revenue pacity { ) 9

N

car

47 IntrepidBeluga §733,328 $183,332 $1.00 $100.00




NN

e Let'slook at the scenarios where the model performed well
e Top 20% were only from this competition id: Y4rRun
e Notice the mean + sdev is (mostly) below the mean of the competitor price
o  From our SHAP analysis, price difference is the most important characteristic of the features we tried
e Both averages are relatively high above $50

capacity utilization (cumulative sales) curves of top 20% revenue selling_seasons Top Selling Seasons Average Price over Time - Competition Y4rRun

® Competitor Avg Price +1SD

I MHHH“HM]H “H H H” ‘H.\mmy\ﬁvTJmiT\:\l\SD\wn

S (T

I
! l"l|IIIIIlIIIIIIIIIIIII|IIIIIIIIII|IIIIIIIIIIIllllIIIIIIIIIIIIII||||" | ||| H

60
Selling Period

47 IntrepidBeluga §733,328 $183,332 ; $1.00 $100.00 $§27.90




Average Price over Time - Competition 3vU9uu
® Competitor Avg Price £1SD
i ® My Avg Price +1SD

Let's look at the scenarios where the model performed poorly

Bottom 20% were only from these competition ids: 3vU9uu, 4MBqpq
Doesn't clearly undershoot competitor's price

Overall price is lower with averages around $10

Bottom Selling Seasons Average Price over Time - Competition 4MBqpq

capacity utilization (cumulative sales) curves of bottom 20% revenue selling_seasons

® Competitor Avg Price +1SD
7 0 - ® My Avg Price £1SD

Lt 1 [T
ot LA

gl Yl

0 60
Selling Period

47 IntrepidBeluga §733,328 $183,332 ; $1.00 $100.00 $§27.90




Global Data Analysis

e Conclusions:

o  Want a high average with enough discount on competitor

o Even with wrong models the pricing can still respond decently

e Mean Demand:
o  Overall: 0.525
o  90th percentile: 0.799
o 10th percentile: 0.0604

Demand vs Price Difference (Global) Demand vs Price Difference (Top 10%)

Demand

i
5
E
8

—75 =50 =25 50 75 -100 =50
Price Difference (my price - competitor's price) Price Difference (my price - competitor's price)

Price Difference (my price - competitor's price)



Raphael




XGBoost - Data

data_to_dec_15_  data_to_dec_15_
nick.csv raph.csv




XGBoost - Feature Selection

e Basic
new df["abs diff"] = abs(new df["price competitor"] - new df["price"])
new df ["price ratio"] = new df["price"] / new df["price competitor"]

new df["price change"] = (

new df.groupby (["competition id", "selling season"]) ["price"].diff ()
)
new df["comp price change"] = (

new df.groupby (["competition id", "selling season"]) ["price competitor"].diff ()




XGBoost - Feature Selection

e Statistic

new df["price roll mean"] = (

new df
.groupby (["competition id", "selling season"]) ["price"]
.transform(lambda s: s.rolling (N, min periods=1l) .mean())

)

new df["comp price roll mean"] = (
new df
.groupby (["competition id", "selling season"]) ["price competitor"]

.transform(lambda s: s.rolling (N, min periods=1) .mean())




XGBoost - Feature Selection

° Forecast

new df["comp price pred"] = (
new df
.groupby (["competition id", "selling season"]) ["price competitor"]
.transform(ses forecast)

)

new df["comp price pred gap"] = new df["price competitor"] -

new df["comp price pred"]




XGBoost - Feature Selection

° Forecast

new df["comp price pred"] = (
new df
.groupby (["competition id", "selling season"]) ["price competitor"]
.transform(ses forecast)

)

new df["comp price pred gap"] = new df["price competitor"] -

new df["comp price pred"]




XGBoost - Feature Selection

° Seasonal new df["season block"] = (

new df

.groupby (["competition id",
"selling season"]) ["selling period"]

.transform(lambda s: pd.gcut (s.rank (method="first"),
labels=False))

)

competition_id selling_season selling_period season_block

1 1 0

1 20 0

21

40

41

S




XGBoost - Competition Splits

High Demand High Willingness

Low Demand Low Willingness

e Demand Decision

season_own["own soldout season"] = (season own["season demand sum"] >= OWN STOCK CAP).astype (int)

own soldout by comp = (

season_own.groupby (COMP COL, as_ index=False) .agg(own_ soldout freg=("own soldout season", "mean"))




XGBoost - Competition Splits

High Demand High Willingness

Low Demand Low Willingness

e Willingness Decision

dfx["selling price"] = np.where(dfx["demand"] > 0, dfx["price"], np.nan

willing by comp = (
dfx.groupby (COMP_COL, as index=False) .agg(mean selling price=("selling price", "mean"))




XGBoost - Competition Splits

Season 1:50 'Season51:100 Season 1:50 fSeason51:100

High Demand High Willingness

Season 1:50 QSeason51:1oo Season 1:50 Season 51:100

Low Demand Low Willingness




XGBoost - Feature Selection

Late Season Selection

first50 = new df.loc[new df["selling season"]

first50["d pos"] (first50 ["demand"]

> 0) .astype (int)

first50["d spike"] = (first50["demand"] >= 2) .astype (int)
comp_sparse = (
first50
.groupby ("competition id", as_ index=False)
-agg (
first50 nonzero rate=("d pos", "mean"),
first50 spike rate=("d spike", "mean"),
first50 mean demand=("demand", "mean"),
first50 max demand=("demand", "max"),

2GXxWsg

2GXWsg 51
2GXWsg 51
2GXxWsg 51

00.663844199830652
00.663844199830652
10.663844199830652
10.663844199830652

<= SEASON CUTOFF] .copy ()



XGBoost - Feature Selection - Result

e Feature selection
model_high_demand__high_willingness__s1 50 — SHAP

price_ratio
price
season_block
price_roll_mean
price_mean

model_high_demand__high_willingness__s51 100 _base — SHAP

price_ratio
price
season_block
abs_diff
price_roll_mean

price_mean
first50_nonzero_rate
first50_mean_demand_given_pos




XGBoost - Feature Selection - Used

e Engineered Features Used

FEATURES ALL = ["price ratio", "price", "price roll mean", "season block", "abs diff"]
FEATURES_FIRST5O = FEATURES ALL
FEATURES 51 100 = FEATURES ALL + ["first50 mean demand given pos", "first50 nonzero rate"]




Model - Prices to Use

high_demand__high_willingness__s1_50.json | steps=250 | season=51 period=50 _demand__high_willingness__s51_100_base.json | steps=250 | season=51 period=]

° °
= c
© ©
£ £
{7} {7}
© ©
o o
Q Q
= 1
2 i
© ©
o o
4 et
a a

41 61 41 61
comp_price comp_price




Model - Prices to Use

low_demand__low_willingness__s1_50.json | steps=250 | season=51 period=50 _demand__low_willingness__s51_100_base.json | steps=250 | season=51 period=5

o o
= (=
© I
= E
9] 0]
© ©
° k]
0 Q
=1 =1
2 9
k] k]
o 1]
= =
a a

41 61
comp_price comp_price




Model - In Action - Overall

Overall Utilization Curves by Competition

3ek8Ez
3uoziC
4PGqB8
4gxUVX
NU72PW
n2Fr2R

5
[}
N
©
£
—
<}
=
o
c
©
£
[}
°
[}
>
=}
©
=1
£
=1
(]

60
selling_period




Model - In Action - All Prices used

3ek8Ez — SaffronDolphin — Your Price (colored by demand) 16 3ek8Ez — SaffronDolphin — Competitor Price (colored by demand)

T T

40 40 60
selling_period selling_period




Model - Accuracy

Competition 1: prediction error (predicted - actual)
Mean = Std by season group

s51_100
Season group




Model - Accuracy

Base model grid (season 51, period 50) Finetuned model grid (season 51, period 50)

k] ©
c c
© IS
S IS
0] 9]
© ©
° °
0] 9]
- -
2 2
S S
o 9]
_ —
a a

41 61

comp_price comp_price




All models are wrong, but
some are useful

1976, George Box




