
Presentation 3
ML

Group: WiseGoose-IntrepidBeluga

Members: Nicholas Chandler, Raphael Bergner

01

02

Agenda

1. Addressing the Competitor
2. ML
3. Overall Analysis

Nickʼs Approaches

Raphael
1. ML

Nick

Time Series - Adversarial Pricing
● If the competitor is in stock:

○ Price 2% lower than the predicted
competitor next price.

● If theyʼre not:
○ Do basic inventory management

assuming we want to sell evenly

Time Series - Autocorrelation Plots
● Autocorrelation Definition:

● How to read the plots:
○ Sign:

■ Positive: Prices continue in same direction
■ Negative: Oscillatory behavior

○ Magnitude:
■ Near 1/1 Strong dependence between values
■ Near 0 Weak dependence

○ Lag Number:
■ Short Lag: Immediate reactions
■ Medium Lag: Slow adjustment patterns

○ Decay Pattern (of magnitude):
■ Slow-decaying Positive: Follows trend
■ Alternating Signs: Oscillation / Undercutting
■ Rapid Decay: Mostly random behavior

Time Series - Adversarial Pricing

Time Series - Adversarial Pricing

Time Series - Adversarial Pricing

Time Series - Adversarial Pricing

XGBoost
● Data Same total set as Raph):

○ 1890000 periods of competitions from Raph and I.
○ Last 20 competitions are held out for the test set.

● Features:
○ 29 features including

■ Competitor stock
■ Lagged/Rolling means and std. devs of columns from competition details
■ Rolling correlations between prices
■ Price difference

● Training Pipeline:
○ 5Fold Cross Validated Random Search for 30 trials

● Best Model:
○ Best RMSE 0.7373
○ Best parameters: {'subsample': 0.6, 'reg_lambda': 1.5, 'reg_alpha': 0, 'n_estimators': 300,

'min_child_weight': 3, 'max_depth': 9, 'learning_rate': 0.1, 'colsample_bytree': 0.8

XGBoost - Feature Importances

XGBoost - Model Performance
● Test Metrics:

○ MSE: 0.6348
○ MAE: 0.5463
○ RSquared: 0.1515
○ RMSE 0.7967

● Interpretation: The model mispredicts demand by
approximately 0.7967 on average.

● Consensus: Not very good… But wait!

XGBoost
The model was far too big at 48Mb…

So we need another approach.

We also switch to JSON at this point too.

XGBoost
● Selected features:

○ Price difference
○ Rolling mean/sum

of demand
○ My price

● Size Limits:
○ Fewer estimators
○ Fewer splits

XGBoost
● XGB with fewer features

● Still CV HPO using random strategy for 10 trials.

● Training Results:

○ Test RMSE 0.7931

○ Test RSquared: 15.92%

● Still not great in terms of performance

● Feature engineering and a stronger model didnʼt
make a massive difference in my setup

● Interestingly, the SHAP analysis seemed to be
correct since the elimination of 20 features
didnʼt bring down performance.

XGBoost
● In this, there was a predetermined selling model where a target demand was aimed for.
● We tried 15 different prices in the ML model for demand to see which had the highest price at the target

demand
● On a low demand day we did alright

NN
● Made a small NN, done with less data to speed up training, same pipeline as XGB
● Parameters: {'hidden_dim': 20, 'n_layers': 2, 'dropout': 0.0772, 'lr': 0.00595, 'batch_size': 512
● Performance (offline data):

○ Test RMSE 0.6916
○ Test MAE 0.5518
○ Test RSquared: 0.0054

Better RMSE but far worse RSquared…

The test set was also smaller so this could be part of the issue

Metric computation:

NN
● Interesting revenue distribution
● There was also decent selling out
● The good competitions are kind of curious given the poor fit of the NN

NN
● Letʼs look at the scenarios where the model performed well
● Top 20% were only from this competition id: Y4rRun
● Notice the mean + sdev is (mostly) below the mean of the competitor price

○ From our SHAP analysis, price difference is the most important characteristic of the features we tried
● Both averages are relatively high above $50

NN
● Letʼs look at the scenarios where the model performed poorly
● Bottom 20% were only from these competition ids: 3vU9uu, 4MBqpq
● Doesnʼt clearly undershoot competitorʼs price
● Overall price is lower with averages around $10

Global Data Analysis
● Conclusions:

○ Want a high average with enough discount on competitor
○ Even with wrong models the pricing can still respond decently

● Mean Demand:
○ Overall: 0.525
○ 90th percentile: 0.799
○ 10th percentile: 0.0604

Raphael

XGBoost - Data

XGBoost - Feature Selection
● Basic

 new_df["abs_diff"] = abs(new_df["price_competitor"] - new_df["price"])

 new_df["price_ratio"] = new_df["price"] / new_df["price_competitor"]

 new_df["price_change"] = (

 new_df.groupby(["competition_id", "selling_season"])["price"].diff()

)

 new_df["comp_price_change"] = (

 new_df.groupby(["competition_id", "selling_season"])["price_competitor"].diff()

)

XGBoost - Feature Selection
● Statistic

new_df["price_roll_mean"] = (

 new_df

 .groupby(["competition_id", "selling_season"])["price"]

 .transform(lambda s: s.rolling(N, min_periods=1).mean())

)

 new_df["comp_price_roll_mean"] = (

 new_df

 .groupby(["competition_id", "selling_season"])["price_competitor"]

 .transform(lambda s: s.rolling(N, min_periods=1).mean())

)

XGBoost - Feature Selection
● Forecast

 new_df["comp_price_pred"] = (

 new_df

 .groupby(["competition_id", "selling_season"])["price_competitor"]

 .transform(ses_forecast)

)

 new_df["comp_price_pred_gap"] = new_df["price_competitor"] -

new_df["comp_price_pred"]

XGBoost - Feature Selection
● Forecast

 new_df["comp_price_pred"] = (

 new_df

 .groupby(["competition_id", "selling_season"])["price_competitor"]

 .transform(ses_forecast)

)

 new_df["comp_price_pred_gap"] = new_df["price_competitor"] -

new_df["comp_price_pred"]

XGBoost - Feature Selection
● Seasonal new_df["season_block"] = (

 new_df

 .groupby(["competition_id",

"selling_season"])["selling_period"]

 .transform(lambda s: pd.qcut(s.rank(method="first"), 5,

labels=False))

)

XGBoost - Competition Splits

season_own["own_soldout_season"] = (season_own["season_demand_sum"] >= OWN_STOCK_CAP).astype(int)

own_soldout_by_comp = (

 season_own.groupby(COMP_COL, as_index=False).agg(own_soldout_freq=("own_soldout_season", "mean"))

)

● Demand Decision

XGBoost - Competition Splits

● Willingness Decision

dfx["selling_price"] = np.where(dfx["demand"] > 0, dfx["price"], np.nan

willing_by_comp = (

 dfx.groupby(COMP_COL, as_index=False).agg(mean_selling_price=("selling_price", "mean"))

)

XGBoost - Competition Splits

XGBoost - Feature Selection
● Late Season Selection

 first50 = new_df.loc[new_df["selling_season"] <= SEASON_CUTOFF].copy()

 first50["d_pos"] = (first50["demand"] > 0).astype(int)

 first50["d_spike"] = (first50["demand"] >= 2).astype(int)

 comp_sparse = (

 first50

 .groupby("competition_id", as_index=False)

 .agg(

 first50_nonzero_rate=("d_pos", "mean"),

 first50_spike_rate=("d_spike", "mean"),

 first50_mean_demand=("demand", "mean"),

 first50_max_demand=("demand", "max"),

)

)

XGBoost - Feature Selection - Result
● Feature selection

XGBoost - Feature Selection - Used
● Engineered Features Used

FEATURES_ALL = ["price_ratio", "price", "price_roll_mean", "season_block", "abs_diff"]

FEATURES_FIRST50 = FEATURES_ALL

FEATURES_51_100 = FEATURES_ALL + ["first50_mean_demand_given_pos", "first50_nonzero_rate"]

Model - Prices to Use

Model - Prices to Use

Model - In Action - Overall

Model - In Action - All Prices used

Model - Accuracy

Model - Accuracy

All models are wrong, but
some are useful

1976, George Box

