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LAD Optimized Prices Revisited (Nick)

Used estimated demand to price: Wanted to account for the target demand:

_ &
T 641

Solve for price needed: Py = 201 02Pe ~ Detarget
\ 701

R REINENCRVICIEIN D (p, p.) = 6 + 61p + Oap, Sell remaining inventory evenly: [ReeaEs

- Revenue Function:

- Optimization of R: Gl
P

Inventory weight:

Final Price: P = Q- Popt T+ (1 I CI) * Pinv




LAD Optimized Prices (Nick

e After experimenting further with RLS, switched to integer linearized LAD to stay with the course.
e Retrained every 10 periods.
e Added heuristics to account for competitor action, exploration, and dealing with unrealistic LAD models.

e Also stored coefficients for analysis.

# Residual decomposition
def residual rule(m, i):
return y[i] - m.y hat _int[i] == m.e pos[i] - m.e neg[i]
model.residuals = pyo.Constraint(model.I, rule=residual rule)
# Ensure price isn't too far from competitor last price - consult the demand, price diff plot
MAX DIFF = 10.0 # max difference from competitor
if competitor has capacity current period in current season:
price = np.clip(price, comp price - MAX DIFF, comp_price + MAX DIFF)

# Linearization of rounding
def lower rule(m, i):

return sum(X[i, j1 * m.m[j] for j in m.J) + m.b - 0.499 <= m.y hat int[i]
model.lower = pyo.Constraint(model.I, rule=lower rule)

i # --- Exploratory Heurist
def upper rule(m, i): # Random price to get some data
return sum(X[i, jI * m.m[j] for j in m.J) + m.b + 0.5 >= m.y _hat_int[i] if selling period in current season < 10:
model.upper = pyo.Constraint(model.I, rule=upper rule) price = random.random() * 100
# Objective: sum of absolute deviations # Randomly (5% of the time, price $5 below the competitor's last price)
model.obj = pyo.Objective(expr=sum(model.e pos[i] + model.e neg[i] for i in model.I), if random.random() < 0.05 and competitor_has_capacity current period_in_current_season:
sense=pyo.minimize) price = comp_price - 5.0

# Solve with GLPK # Monopoly adjustment
if not competitor has_capacity current period in current season:

solver = pyo.SolverFactory("glpk") price *= MONOPOLY MARKUP

solver.solve(model, tee=False)

coefs = np.array([pyo.value(model.b)] + [pyo.value(model.m[j]) for j in model.J]])
return coefs



LAD Optimized Prices (Nick)

e Results (11-17-25):
o  Best placing round with the LAD model as described.
o Low demand day (but | placed 8th).
o My competitor here priced ~$50 the entire time and topped the
leaderboard. (I still won against him in this one though)

Average Price over Time - Competition 38urék

® Competitor Avg Price +1SD
® My Avg Price £1SD

Competition with highest revenue: 38ur6k (Total Revenue: 84969.8)

Selling Period

capacity utilization (cumulative sales) curves of all selling seasons
revenue pacity ( ) 9 Demand Surface

IntrepidBeluga $173,997 $43,499 ; $1.00 $100.00 $31.84




Average Price

LAD Optimized Prices

e Results (11-17-25):
o  Examination of LAD coefficients in best run.
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LAD Optimized Prices (Nick)

e Results (11-19-25):

Average Price over Time - Competition 47zmYt

® Competitor Avg Price +1SD
® My Avg Price £1SD

o  Had trouble selling enough...

o  One can see the relaxation of the competitor price constraint -
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v

o  The first 10 seasons were random uniform to get data for LAD

o  Was a relatively high demand day.

Average Price over Time - Competition Z5ZEoc

® Competitor Avg Price +1SD
® My Avg Price £1SD

Competition with highest revenue: Z5ZEoc (Total Revenue: 211881.6)

revenue
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26 IntrepidBeluga $485,516 $121,379 $1.00 $100.00




Average Price

80 -

70 -

60 -

40 -

30 -

LAD Optimized Prices (Nick)

e Results (11-19-25):
o  Examination of the LAD coefficients in the best
competition.

Average Price over Time - Competition Z5ZEoc

® Competitor Avg Price +1SD
® My Avg Price £1SD
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Dynamic Pricing: A Learning Approach (Nick)

e Using historical prices (and assuming optimal competitor behavior) we implement the following model:

. . . e e . \ H2,7 P2.7+P1,r
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= 2 E.T




Dynamic Pricing: A Learning Approach (Nick

def build beta estimator(pl, p2, max_periods=20):

Gi

pl
p2

#

m.

#

ven:

pl[i] = your price at step i

p2[i] = competitor price at step i

Fit betas in:

p2 pred = (beta® + betal * pl) / (-2 * beta2)
by minimizing L1 error.

Returns [beta®, betal, beta2].

= pl[-max_periods:]
= p2[-max_periods:]

= len(pl)
pyo.ConcreteModel ()

.I = pyo.RangeSet(0, n - 1)

Decision variables: the betas

beta®
betal
beta2

pyo.Var(domain=pyo.Reals)
pyo.Var(domain=pyo.Reals)
pyo.Var(domain=pyo.Reals, bounds=(-1000, -le-6))

L1 loss auxiliary variables
z = pyo.Var(m.I, domain=pyo.NonNegativeReals)

Absolute deviation constraints

def abs lo(m, i):

pred = (m.beta® + m.betal * pl[il) / (-2 * m.beta2)
return m.z[i] >= p2[i] - pred

m.abs lo = pyo.Constraint(m.I, rule=abs lo)

def abs_hi(m, i):

pred = (m.beta® + m.betal * p1l[i]l) / (-2 * m.beta2)
return m.z[i] >= -(p2[i] - pred)

m.abs _hi = pyo.Constraint(m.I, rule=abs hi)

# Minimize sum of absolute errors

m.obj = pyo.Objective(expr=sum(m.z[i] for i in m.I), sense=pyo.minimize)

#

Solve

solver = pyo.SolverFactory("ipopt")
solver.solve(m, tee=False)

# Return coefficients like regression lad
coefs = [pyo.value(m.beta®), pyo.value(m.betal), pyo.value(m.beta2)]
return coefs

# beta2 < @

# --- Solve integer-linearized LAD for coefficients
coefs = regression lad(X arr, y arr) # returns [b, ml, m2]
theta = torch.tensor([[coefs[0]], [coefs[1]], [coefs[2]]], dtype=torch.float32)

comp_coefs = build beta estimator(my prices, comp prices)
comp_theta = torch.tensor([[comp coefs[@]], [comp coefs[1]], [comp coefs[2]]], dtype=torch.float32)

Estimation of Competitor Coefficients (Inside p)

< Estimation of Competitor Coefficients

Inventory Management Heuristic
MIN SALE FRACTION = ©0.05 # never price so high you sell <5% of remaining inventory
MAX SALE FRACTION = 0.25 # never price so low you sell >25% remaining inventory
# Estimate expected units to sell
expected demand = theta® mine + thetal mine*price + theta2 mine*comp price
if expected demand > remaining inventory * MAX SALE FRACTION:
price *= 1.05 # slightly increase to slow sales

— elif expected demand < remaining inventory * MIN SALE FRACTION:

price *= 0.95 # slightly decrease to speed up sales



Dynamic Pricing: A Learning Approach (Nick)

Average Price over Time - Competition 4EVoxY

® Competitor Avg Price £1SD

e Results (11-24-25): &
o  Most of the revenue was from the below competition.
o Near perfect performance on bottom, worse on top.
o No early sell outs, many runs with stock remaining.
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Competition with highest revenue: 42e2XE (Total Revenue: 232012.4)

Average Price over Time - Competition 42e2XE

Demand Surface
® Competitor Avg Price £1SD

® My Avg Price £1SD
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27 IntrepidBeluga $260,748 $130,374 : $100.00 $40.45



Dynamic Pricing: A Learning Approach (Nick)

Seasons 0-99
6o (intercept)

Results (11-24-25):
o  Still my coefficients |
o Can see good values for theta 0 and theta 1 —

Average Price over Time - Competition 42e2XE ,
61 (price slope)

® Competitor Avg Price +1SD
® My Avg Price £1SD
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Forecasting (Nick)

e Inthe next three approaches, we use the linear demand model and plug in the forecasted competitor’s price.
o  First, naive
o Second, ETS
o  Third, AR(2)

Let p§ be yesterday's forecast and p§ today's observation:

witha € (0,1)




Average Price over Time - Competition b6fLDQ

Forecasting (Nick) T

e Results (11-26-25) - Naive Forecast: Lo G il
o  Decent but still not enough selling!

o  Competitor was ImpartialGoldfish #1 on the

leaderboard. (With constant price strategy)

Competition with highest revenue: b6fLDQ (Total Revenue: 239430.0) : 0

40 60
Selling Period

capacity utilization (cumulative sales) curves of all selling seasons

Demand Surface
revenue

capacity utilization

20 IntrepidBeluga $520,579 $130,145 $1.00 $100.00 S34.77




Forecasting (Nick)

Average Price
N\ w o

E;
Results (11-26-25) - Naive Forecast:

o Note that the values for the thetas here tend
close to 0. This wasn't the case for poorer
performing competitions.

Average Price over Time - Competition b6fLDQ

® Competitor Avg Price £1SD
® My Avg Price £15D
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Forecasting (Nick)

80 - ® Competitor Avg Price £1SD
® My Avg Price £1SD
e Results (11-29-25) - Smoothing Forecast: .8 !
o  Fewer catastrophic failures <o it i ] ittt Al l
o  Overall best demand model + forecasting run g o I i I
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Seasons 100-199
6o (intercept)

Forecasting (Nick) &

0 —A—M e — » '

g
e Results (11-29-25) - Smoothing Forecast: —io A

o  The values for thetas are tending
closer to O than the other

competitions.
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Forecasting (Nick)

Average Price over Time - Competition d5EgPK

e Results (12-1-25) - AR(2) Forecast: s e e

® My Avg Price +1SD

o Used alag of 2, naive forecast when AR failed or there was too little data
o Here we had strange results (top) and my best run (bottom)

Competition with highest revenue: 37b4iB (Total Revenue: 239378.7)

Demand Suirface Average Price over Time - Competition 37b4iB
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25 IntrepidBeluga $410,441 $102,610 : $1.00 $100.00



Seasons 0-99
6o (intercept)
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Forecasting (Nick) &
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e Results (12-1-25) - AR(2) Forecast: o

o Here we have many outliers in
parameter estimation
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Dynamic Programming (Nick

e Used the techniques introduced in class to create the value table.

e Had to optimize the code to run fast enough.

def dp table(para = [0.64237265, -0.01556792, 0.01219541]):
T = 101 # timesteps
81 # capacity le
12 # max dema

C
D

V = np.zeros((T, C)) # Val 1
price table = np.zeros((T, C, D+1)) # Optional tore price
demand_table = np.zeros((T, C, D+1)) # Opti store d

for t in range(1, T):
for free cap in range(C):
max_demand = min(D, free cap)
for demand in range(max demand+1):
best price = np.clip(get best price target demand(demand, para=para), 6.61, 160)

# DP: remaining capaci

remaining cap = free cap - demand

best v = V[t-1, remaining cap] if t-1 > @ else @ Vt(x’ d) — Vt—l(x FE d) + d ¥ price(d)

V[t, free cap] = max(V[t, free cap], best v + demand * best price)

# optional tore price/demand leading to max
price table[t, free cap, demand] = best price
demand_table[t, free cap, demand] = demand

rows = []

for t in range(T):

for free cap in range(C):
for demand in range(min(D, free cap)+1):
V_t = V[t, free cap]
best price = price table[t, free cap, demand]
rows.append([t, free cap, V_t, best price, demand])

df v fast = pd.DataFrame(rows, columns=['t','free cap','V t','price t',6'demand t'])
return df_V_fast



Average Price over Time - Competition 3fU686

Dynamic Programming (Nick) e -

e Results (12-06-2025):
o Used static demand model params
(estimated from 23 days)
o Maybe | should use a couple DP tables.

Competition with highest revenue: 3fU686 (Total Revenue: 55563.299999999996)

revenue capacity utilization (cumulative sales) curves of all selling seasons

16 IntrepidBeluga $167,672 $41,918 $15.00 $100.00



° ° ° Average Price over Time - Competition 3hCoakK
al ® Competitor Avg Price +1SD
- i ® My Avg Price £1SD
| | L# D

%

e Results (12-08-2025):
o Used the overall parameters in the first 50
periods and estimated parameters for the
second 50.
o  High standard deviation of price in the
second half

Average Price

40 60
Selling Period

Competition with highest revenue: 3hCoaK (Total Revenue: 147320.69999999998)

Demand Surface

capacity utilization (cumulative sales) curves of all selling seasons

revenue

44 IntrepidBeluga $268,055 $134,027 $1.00 $100.00 $19.91




Some overall statistics + visualization

Demand vs Price Difference

©
c
I
£
[N
(@]

—100 -50 0

Price Difference (my price - competitor's price)

Mean demand: 0.48915154639175257 Variance: 0.8504440125296269



Reflections & Next Steps

e |t seems that small values of theta in the OLS models tend to work better.
o Perhaps add regularization.

e We seem to not be stocking out enough (i.e. losing profits!). This contrasts the last competition’s performance
o  We need to focus more on underpricing the competitor (i.e. better adversarial behavior).

e Computational feasibility is becoming an issue (particularly with Dynamic Programming)
o  Ensure that the models developed are actually feasible within the time, explore fast approaches

e Maybe better demand models would yield better performance




Raphael




Which Forecast Model is the best?

e Accuracy
e Computation Time
e Parameter Settings




Competitor Types

e Variance of Prices
e Changes towards my prices

Low Var Med Var High Var

Low Attach

Med Attach

High Attach




Competitor Types

e Variance of Prices
e Changes towards my prices

Low Var Med Var High Var

Low Attach

Med Attach

High Attach | Copy Cat Copy Cat




Competitor Types

e Variance of Prices
e Changes towards my prices

Low Var Med Var High Var
Low Attach Random
Med Attach Random

High Attach | Copy Cat Copy Cat




Competitor Types

e Variance of Prices
e Changes towards my prices

Low Var Med Var High Var

Low Attach | Constant Random

Med Attach Random
High Attach | Copy Cat Copy Cat | am

Random




Competitor Types

e Variance of Prices

e Changes towards my prices

Low Var Med Var High Var
Low Attach Constant Random
Med Attach Random
High Attach | Copy Cat Copy Cat | am Random




Competitor Types

e Variance of Prices
e Changes towards my prices

Low Var Med Var High Var
Low Attach Constant Price-Adapt Random
Med Attach | Comp-Adapt | Complex Random

High Attach | Copy Cat Copy Cat | am Random




Competitor Types
o—Constant

+—Randem

—Copy-Cat

Adapt opp

Adapt price

Adapt complex
Unexpected Changes




Competitor Types

o—erRstant
o—Rapdern

Season 5

Adapt opp
Adapt price
Adapt complex
Unexpected Changes E




Competitor Types

o—Constant
o—Randem

—CopyCat
o—Adaptopp

e Adapt price

e Adapt complex

e Unexpected Changes




Competitor Types

o—Constant
o—Randem

—CopyCat
—Adaptepp

Season 12

e Adapt complex
e Unexpected Changes E




Competitor Types

o—Constant
o—Randem

—CopyCat

—Adaptepp
e Adapt price

e Unexpected Changes




Competitor Types

o—Rapdern

—Copy-Cat
O—Aela-p{—epp

e Adapt price

e Adapt complex




Competitor Types

e Adapt price
e Adapt complex
e Unexpected Changes




Forecast Models

from statsforecast.models import AutoETS, AutoARIMA, HoltWinters

HYPERPARAMETERS = {

"latest mean average": {"use this many latest steps": [1,2,

"last seasons values":{"sigma": [0.5, 1,

"exponential smoothing": {

"model": ["ZZZz", "AZZ", "AZN", "MZN",
"damped": [True, False]

b

"arimax": {
e [0, 1, 2],

"da": [0, 1, 21,
"gq": [0, 1, 21,
by
"holt winters": {
"season length": [12, 25, 100],
"mode": ["Add", "Multi"],

2, 41},

IIMZZ"] ,

S,

10,

5011},




Forecast Models

Setup:
- For Each Competition type:
- Sample 50 random points
- For Each Model Parameter Setup:
- Predict next price
- Calculate MAE




Analysis

Overall Model comparison - Mean Difference per Competition
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Analysis - Difficult Predictions

exponential_smoothing - Hyperparameter comparison
COMP: 2025-11-08_TZgXfS_adapting_competitor.csv, model_index=307, comp_row=1207
Last 50 competitor prices & next-step forecasts

-@— competitor_price (history) @® model=MZN, damped=True

® model=AZN, damped=False model=MZZ, damped=False

model=AZN, damped=True ® model=MZZ, damped=True
@® model=AZZ, damped=False model=ZZZ, damped=False
| J

model=AZZ, damped=True model=2ZZZ, damped=True W x
model=MZN, damped=False actual next
®
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sis - Difficult Predictions

exponential_smoothing - Hyperparameter comparison
COMP: 2025-11-26_0XZr3Q_self adaptation.csv, model_index=226, comp_row=1126
Last 50 competitor prices & next-step forecasts

-@-— competitor_price (history) model=MZN, damped=True
@® model=AZN, damped=False model=MZZ, damped=False
model=AZN, damped=True @® model=MZZ, damped=True

@® model=AZZ, damped=False model=ZZZ, damped=False
@® model=AZZ, damped=True model=ZZZ, damped=True
@

model=MZN, damped=False actual next
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Analysis - Difficult Predictions

holt_winters - Hyperparameter comparison
COMP: 2025-11-26_0oXZr3Q_self adaptation.csv, model_index=226, comp_row=1126
Last 50 competitor prices & next-step forecasts

-@- competitor_price (history) @® season_length=25, mode=Multi
@® season_length=12, mode=Add @® season_length=100, mode=Add
season_length=12, mode=Multi season_length=100, mode=Multi
@® season_length=25, mode=Add actual next
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Analysis - Difficult Predictions

arimax - Hyperparameter comparison
COMP: 2025-11-26_0XZr3Q_self adaptation.csv, model_index=226, comp_row=1126
Last 50 competitor prices & next-step forecasts

=@~ competitor_price (history) ® p=1.0,d=1.0,q=2.0
® p=0.0,d=0.0,q9=0.0 p=1.0, d=2.0, g=0.0
p=0.0, d=0.0, q=1.0 p=1.0, d=2.0, q=1.0
® p=0.0,d=00,q9=2.0 ® p=1.0,d=2.0,g=2.0
® p=0.0,d=1.0,qg=0.0 p=2.0, d=0.0, g=0.0
® p=0.0,d=1.0,qg=1.0 p=2.0, d=0.0, g=1.0
@ p=0.0,d=1.0,q=2.0 p=2.0, d=0.0, q=2.0
p=0.0, d=2.0, q=0.0 p=2.0,d=1.0, q=0.0
p=0.0, d=2.0, q=1.0 p=2.0,d=1.0, g=1.0
p=0.0, d=2.0, q=2.0 p=2.0,d=1.0, g=2.0
p=1.0, d=0.0, g=0.0 ® p=2.0,d=2.0,q=00
p=1.0, d=0.0, q=1.0 p=2.0,d=2.0, g=1.0
p=1.0, d=0.0, q=2.0 p=2.0,d=2.0,g=2.0
p=1.0,d=1.0, q=0.0 actual next
p=1.0,d=1.0, q=1.0
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Analysis - Parameters

exponential_smoothing - Unexpected_c exponential_smoothing - Change_within_period
Hyperparameter Heatmap Hyperparameter Heatmap

Mean Absolute Error
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Analysis - Adapt Comp - Expo. Smooth.

exponential_smoothing - Adapting_Comp
Hyperparameter Heatmap

Mean Absolute Error




Analysis - Adapt Comp - Holt-Winter

holt_winters - Adapting_Comp
Hyperparameter Heatmap
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Analysis - Adapt Comp - Arimax

arimax - Adapting_Comp (q=1)

arimax - Adapting_Comp (q=0)

arimax - Adapting_Comp (q=2)

Mean Absolute Error




nhalysis - Unexpected Changes

Exponential Smoothing Arimax

exponential_smoothing - Unexpected_changes arimax - Unexpected_changes (q=0)
Hyperparameter Heatmap

Mean Absolute Error
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Analysis - Only Best Hyperparameters

Best Hyperparameter per Model
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latest_mean_average exponential_smoothing last_seasons_values arimax holt_winters
use_this_many_latest_steps=1.0 model=AZN, damped=False sigma=1.0 p=1.0, d=1.0, q=2.0 season_length=12, mode=Add




Analysis - Only Best Hyperparameters

Best Hyperparameter per Model
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use_this_many_latest_steps=1.0 model=AZN, damped=False sigma=1.0 p=1.0,d=1.0, q=2.0 season_length=12, mode=Add




Analysis - Outliers of exp. smoothing

All models & hyperparameters on exponential_smoothing outlier tasks
(absolute error vs. task_id)

®- arimax | p=0, d=1, q=2 @~ holt_winters | season_length=100, mode=Multi
exponential_smoothing | model=AZN, damped=False
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Analysis - Outlier Model Correlations

Correlation between models

arimax

holt_winters




sis - Qutliers

Outlier 8 - Forecast Comparison

competitor history
arimax (0,1,2)
holt-winters (100,Mult)
exp_smoothing (best)
actual
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Analysis - Breakdown

e On average exponential smoothing predicted best on

given competitions.
e At some tasks, holt-winter (Mult & 100 seasons) might be

better

What about the computation time?




Analysis - Time Analysis - expo smooth

exponential_smoothing - duration_s by hyperparameter combination
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Analysis - Time Analysis - holt winter

holt_winters - duration_s by hyperparameter combination
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Analysis - Time Analysis - holt winter




Forecast Models - Changed Setup

Setup:
- For Each Competition:
- Sample 12 random points
- For Each Model Parameter Setup:
- Predict next price
- Calculate MAE




sis - All Data

Best Hyperparameter per Model Across Broad Runs
(Boxplot of ALL Absolute Errors for Best Hyperparams)
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latest_mean_average exponential_smoothing arimax holt_winters last_seasons_values
use_this_many_latest_steps=1.0 model=AZN, damped=True p=1.0, d=1.0, q=0.0 season_length=12, mode=Add sigma=4.0




sis - All Data

Best Hyperparameter per Model Across Broad Runs
(Boxplot of ALL Absolute Errors for Best Hyperparams)
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season_length=12, mode=Add sigma=4.0
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sis - Outlier Comparison

Outlier Run 2025-11-05_3JcqTX.csv - Boxplot of abs_diff per Model
(each model uses its BEST hyperparameter combo for this run)
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sis - Outlier Comparison

Outlier Run 2025-10-20_nick_34XjaN.csv - Boxplot of abs_diff per Model
(each model uses its BEST hyperparameter combo for this run)
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sis - Outlier Comparison

Deep Dive 2025-10-20_nick_34XjaN.csv - model_index=8915, comp_row=9815

Last 100 competitor prices & model forecasts

A
A
%

—-8— competitor_price (history)

latest_mean_average forecast
last_seasons_values forecast
arimax forecast
exponential_smoothing forecast
holt_winters forecast

actual next

9760
row index in competition CSV




Analysis - Outlier Comparison

Sadly it is expensive




Analysis - Outller Comparlson




Conclusion (Raph)

e EXxponential Smoothing works well in this duopoly
o Still analyse the competitions, where exponential
smoothing fails
o Maybe there is a better algorithm out there
e Rather spend computation time on a better demand
model




All models are wrong, but
some are useful

1976, George Box




