Presentation 2
Optimization,

, Dg\(/ngmig;
Programming, & Time
Series Forecasting

Group: WiseGoose-IntrepidBeluga

Members: Nicholas Chandler, Raphael Bergner

Agenda

o1y Nick's Approaches

1. LAD Optimized Prices

2. Time Series Forecasting

3. Dynamic Pricing: A Learning Approach
4. Dynamic Programming

022 Which Forecast to choose

1. Competitor types
2. Forecast models
3. Analysis

Nick

LAD Optimized Prices Revisited (Nick)

Used estimated demand to price: Wanted to account for the target demand:

_ &
T 641

Solve for price needed: Py = 201 02Pe ~ Detarget
\ 701

R REINENCRVICIEIN D (p, p.) = 6 + 61p + Oap, Sell remaining inventory evenly: [ReeaEs

- Revenue Function:

- Optimization of R: Gl
P

Inventory weight:

Final Price: P = Q- Popt T+ (1 I CI) * Pinv

LAD Optimized Prices (Nick

e After experimenting further with RLS, switched to integer linearized LAD to stay with the course.
e Retrained every 10 periods.
e Added heuristics to account for competitor action, exploration, and dealing with unrealistic LAD models.

e Also stored coefficients for analysis.

Residual decomposition
def residual rule(m, i):
return y[i] - m.y hat _int[i] == m.e pos[i] - m.e neg[i]
model.residuals = pyo.Constraint(model.I, rule=residual rule)
Ensure price isn't too far from competitor last price - consult the demand, price diff plot
MAX DIFF = 10.0 # max difference from competitor
if competitor has capacity current period in current season:
price = np.clip(price, comp price - MAX DIFF, comp_price + MAX DIFF)

Linearization of rounding
def lower rule(m, i):

return sum(X[i, j1 * m.m[j] for j in m.J) + m.b - 0.499 <= m.y hat int[i]
model.lower = pyo.Constraint(model.I, rule=lower rule)

i # --- Exploratory Heurist
def upper rule(m, i): # Random price to get some data
return sum(X[i, jI * m.m[j] for j in m.J) + m.b + 0.5 >= m.y _hat_int[i] if selling period in current season < 10:
model.upper = pyo.Constraint(model.I, rule=upper rule) price = random.random() * 100
Objective: sum of absolute deviations # Randomly (5% of the time, price $5 below the competitor's last price)
model.obj = pyo.Objective(expr=sum(model.e pos[i] + model.e neg[i] for i in model.I), if random.random() < 0.05 and competitor_has_capacity current period_in_current_season:
sense=pyo.minimize) price = comp_price - 5.0

Solve with GLPK # Monopoly adjustment
if not competitor has_capacity current period in current season:

solver = pyo.SolverFactory("glpk") price *= MONOPOLY MARKUP

solver.solve(model, tee=False)

coefs = np.array([pyo.value(model.b)] + [pyo.value(model.m[j]) for j in model.J]])
return coefs

LAD Optimized Prices (Nick)

e Results (11-17-25):
o Best placing round with the LAD model as described.
o Low demand day (but | placed 8th).
o My competitor here priced ~$50 the entire time and topped the
leaderboard. (I still won against him in this one though)

Average Price over Time - Competition 38urék

® Competitor Avg Price +1SD
® My Avg Price £1SD

Competition with highest revenue: 38ur6k (Total Revenue: 84969.8)

Selling Period

capacity utilization (cumulative sales) curves of all selling seasons
revenue pacity () 9 Demand Surface

IntrepidBeluga $173,997 $43,499 ; $1.00 $100.00 $31.84

Average Price

LAD Optimized Prices

e Results (11-17-25):
o Examination of LAD coefficients in best run.

60 -

40 -

ZG_

Average Price over Time - Competition 38urék

Selling Period

40 60

® Competitor Avg Price £15D
® My Avg Price £15D

0.0
0.2 4
—0.4

—0.6

Value

-1.0 4
= 5

-1.4

—0.05 1

—0.10 4

Value

—0.20 1

-0.25 1

—0.30 4

-0.35

Seasons 100-199

6o (intercept)

61 (price slope)

—0.8 A

62 (competitor slope)

—0.15 4

20

40

60
Selling period

80

100

LAD Optimized Prices (Nick)

e Results (11-19-25):

Average Price over Time - Competition 47zmYt

® Competitor Avg Price +1SD
® My Avg Price £1SD

o Had trouble selling enough...

o One can see the relaxation of the competitor price constraint -

]“ || || ||| D

v

o The first 10 seasons were random uniform to get data for LAD

o Was a relatively high demand day.

Average Price over Time - Competition Z5ZEoc

® Competitor Avg Price +1SD
® My Avg Price £1SD

Competition with highest revenue: Z5ZEoc (Total Revenue: 211881.6)

revenue

1 J""""'li"""""“'“||Fr~“"""|!'|ll|||||‘

0 60
Selling Period

26 IntrepidBeluga $485,516 $121,379 $1.00 $100.00

Average Price

80 -

70 -

60 -

40 -

30 -

LAD Optimized Prices (Nick)

e Results (11-19-25):
o Examination of the LAD coefficients in the best
competition.

Average Price over Time - Competition Z5ZEoc

® Competitor Avg Price +1SD
® My Avg Price £1SD

!
(I hamanmnan . |
RIRELp9aDls -4|---nnlill||||||l|'"“"Fr--..""l!l"“““,

0 20 40 60 80 100
Selling Period

Value

Value

800 1

600

400 -

200 A

—200 -

2.0

1.5 1

1.0 4

0.5

Seasons 300-399
6o (intercept)

61 (price slope)

6> (competitor slope)

20 40 60
Selling period

80

100

Dynamic Pricing: A Learning Approach (Nick)

e Using historical prices (and assuming optimal competitor behavior) we implement the following model:

. . . e e . \ H2,7 P2.7+P1,r
[J H . Fass T
= 2 E.T

Dynamic Pricing: A Learning Approach (Nick

def build beta estimator(pl, p2, max_periods=20):

Gi

pl
p2

#

m.

#

ven:

pl[i] = your price at step i

p2[i] = competitor price at step i

Fit betas in:

p2 pred = (beta® + betal * pl) / (-2 * beta2)
by minimizing L1 error.

Returns [beta®, betal, beta2].

= pl[-max_periods:]
= p2[-max_periods:]

= len(pl)
pyo.ConcreteModel ()

.I = pyo.RangeSet(0, n - 1)

Decision variables: the betas

beta®
betal
beta2

pyo.Var(domain=pyo.Reals)
pyo.Var(domain=pyo.Reals)
pyo.Var(domain=pyo.Reals, bounds=(-1000, -le-6))

L1 loss auxiliary variables
z = pyo.Var(m.I, domain=pyo.NonNegativeReals)

Absolute deviation constraints

def abs lo(m, i):

pred = (m.beta® + m.betal * pl[il) / (-2 * m.beta2)
return m.z[i] >= p2[i] - pred

m.abs lo = pyo.Constraint(m.I, rule=abs lo)

def abs_hi(m, i):

pred = (m.beta® + m.betal * p1l[i]l) / (-2 * m.beta2)
return m.z[i] >= -(p2[i] - pred)

m.abs _hi = pyo.Constraint(m.I, rule=abs hi)

Minimize sum of absolute errors

m.obj = pyo.Objective(expr=sum(m.z[i] for i in m.I), sense=pyo.minimize)

#

Solve

solver = pyo.SolverFactory("ipopt")
solver.solve(m, tee=False)

Return coefficients like regression lad
coefs = [pyo.value(m.beta®), pyo.value(m.betal), pyo.value(m.beta2)]
return coefs

beta2 < @

--- Solve integer-linearized LAD for coefficients
coefs = regression lad(X arr, y arr) # returns [b, ml, m2]
theta = torch.tensor([[coefs[0]], [coefs[1]], [coefs[2]]], dtype=torch.float32)

comp_coefs = build beta estimator(my prices, comp prices)
comp_theta = torch.tensor([[comp coefs[@]], [comp coefs[1]], [comp coefs[2]]], dtype=torch.float32)

Estimation of Competitor Coefficients (Inside p)

< Estimation of Competitor Coefficients

Inventory Management Heuristic
MIN SALE FRACTION = ©0.05 # never price so high you sell <5% of remaining inventory
MAX SALE FRACTION = 0.25 # never price so low you sell >25% remaining inventory
Estimate expected units to sell
expected demand = theta® mine + thetal mine*price + theta2 mine*comp price
if expected demand > remaining inventory * MAX SALE FRACTION:
price *= 1.05 # slightly increase to slow sales

— elif expected demand < remaining inventory * MIN SALE FRACTION:

price *= 0.95 # slightly decrease to speed up sales

Dynamic Pricing: A Learning Approach (Nick)

Average Price over Time - Competition 4EVoxY

® Competitor Avg Price £1SD

e Results (11-24-25): &
o Most of the revenue was from the below competition.
o Near perfect performance on bottom, worse on top.
o No early sell outs, many runs with stock remaining.

i
il "'

,.IIIIIIlllim

\H]MWWMMMmmwmmmwmmmmmmmmmm

HHERTHTT

40 60
Selling Period

Competition with highest revenue: 42e2XE (Total Revenue: 232012.4)

Average Price over Time - Competition 42e2XE

Demand Surface
® Competitor Avg Price £1SD

® My Avg Price £1SD

revenue ' I o ‘ IH[HI‘.[] | il |
60 - |

o FU \'“lﬂllillia]n;;m ii'lii“wpﬁ.ﬂﬁ-iiui'i i
’

Selling Period

27 IntrepidBeluga $260,748 $130,374 : $100.00 $40.45

Dynamic Pricing: A Learning Approach (Nick)

Seasons 0-99
6o (intercept)

Results (11-24-25):
o Still my coefficients |
o Can see good values for theta 0 and theta 1 —

Average Price over Time - Competition 42e2XE ,
61 (price slope)

® Competitor Avg Price +1SD
® My Avg Price £1SD

il il

PP L i
111 .J.Lll- U (g Ll

"ilffgii.;u'|flllili~..|g,i||i.ip.;!i i

6> (competitor slope)

Average Price

40 60
Selling Period

60
Selling period

Forecasting (Nick)

e Inthe next three approaches, we use the linear demand model and plug in the forecasted competitor’s price.
o First, naive
o Second, ETS
o Third, AR(2)

Let p§ be yesterday's forecast and p§ today's observation:

witha € (0,1)

Average Price over Time - Competition b6fLDQ

Forecasting (Nick) T

e Results (11-26-25) - Naive Forecast: Lo G il
o Decent but still not enough selling!

o Competitor was ImpartialGoldfish #1 on the

leaderboard. (With constant price strategy)

Competition with highest revenue: b6fLDQ (Total Revenue: 239430.0) : 0

40 60
Selling Period

capacity utilization (cumulative sales) curves of all selling seasons

Demand Surface
revenue

capacity utilization

20 IntrepidBeluga $520,579 $130,145 $1.00 $100.00 S34.77

Forecasting (Nick)

Average Price
N\ w o

E;
Results (11-26-25) - Naive Forecast:

o Note that the values for the thetas here tend
close to 0. This wasn't the case for poorer
performing competitions.

Average Price over Time - Competition b6fLDQ

® Competitor Avg Price £1SD
® My Avg Price £15D

I li]

, mUl]

E

40 60
Selling Period

Value
£

-50 4

-75 4

—100 A

—125 4

—150 A

=175 4

Seasons 100-199
6o (intercept)

61 (price slope)

6> (competitor slope)

20

40 60 80
Selling period

100

Forecasting (Nick)

80 - ® Competitor Avg Price £1SD
® My Avg Price £1SD
e Results (11-29-25) - Smoothing Forecast: .8 !
o Fewer catastrophic failures <o it i] ittt Al l
o Overall best demand model + forecasting run g o I i I
SRR A
30 - —
Competition with highest revenue: 3Swz6t (Total Revenue: 204612.4) 20-
(.‘» 0 .“C 6‘1.‘ I%‘U lf‘?O
Selling Period
revenue capacity utilization (cumulative sales) curves of all selling seasons Demand Surface

100 - 1.0-

IntrepidBeluga §723,422 $144,684 1.4 $1.00 $100.00 $30.88

80 - o.
0.7
60 - g
So
8 0a-
40 -]
0.2
20 -
0
0.0 40
" | 0 i | " ! ; Yo, 60
00 I] i g ' ' ! 0 10 20 30 40 50 60 70 8C 90 100 " Price
0 500 1000 1500 2000 2500 3000 3500 selling_periods

Demand

0.552 0.192

Seasons 100-199
6o (intercept)

Forecasting (Nick) &

0 —A—M e — » '

g
e Results (11-29-25) - Smoothing Forecast: —io A

o The values for thetas are tending
closer to O than the other

competitions.

61 (price slope)

1.25 4

1.00 A

0.75 1

0.50 1
Average Price over Time - Competition 3Swz6t

Value

0.25 1
80 - ® Competitor Avg Price £15D —
® My Avg Price £15D —gﬁﬁ

—0.25 1

705 —0.50 1

6> (competitor slope)

0.2

50 - \ l b
il|l||i:| l v » 0.1
[TELTL] [|
“ i AR i

Average Price

0.0 1

Value
N
-

20 - —-0.2 4

0 20 40 60 80 100 0 20 40 60 80 100
Selling Period Selling period

Forecasting (Nick)

Average Price over Time - Competition d5EgPK

e Results (12-1-25) - AR(2) Forecast: s e e

® My Avg Price +1SD

o Used alag of 2, naive forecast when AR failed or there was too little data
o Here we had strange results (top) and my best run (bottom)

Competition with highest revenue: 37b4iB (Total Revenue: 239378.7)

Demand Suirface Average Price over Time - Competition 37b4iB

80 - ® Competitor Avg Price +1SD
revenue M erye sl c " # My Avg Price £1SD

l_\‘

L. Mk m
‘ |

p— ({111
1 A O g

Selling Period

25 IntrepidBeluga $410,441 $102,610 : $1.00 $100.00

Seasons 0-99
6o (intercept)

15 4

Forecasting (Nick) &

10 A

Value

e Results (12-1-25) - AR(2) Forecast: o

o Here we have many outliers in
parameter estimation

61 (price slope)

Average Price over Time - Competition 37b4iB

Value
o

80 - ® Competitor Avg Price £15D
® My Avg Price £15D 5]

70 - 1

60 -
6> (competitor slope)

Average Price
(9]
3
T—
==
=
N -

1o - ; v «......,.‘.u-mm|llll|llll|||||||||"|"""“||""I"!Il""“l!l[]"""

30 -

Value

20 -

0 20 40 60 80 100 0 20 40 60 80 100
Selling Period Selling period

Dynamic Programming (Nick

e Used the techniques introduced in class to create the value table.

e Had to optimize the code to run fast enough.

def dp table(para = [0.64237265, -0.01556792, 0.01219541]):
T = 101 # timesteps
81 # capacity le
12 # max dema

C
D

V = np.zeros((T, C)) # Val 1
price table = np.zeros((T, C, D+1)) # Optional tore price
demand_table = np.zeros((T, C, D+1)) # Opti store d

for t in range(1, T):
for free cap in range(C):
max_demand = min(D, free cap)
for demand in range(max demand+1):
best price = np.clip(get best price target demand(demand, para=para), 6.61, 160)

DP: remaining capaci

remaining cap = free cap - demand

best v = V[t-1, remaining cap] if t-1 > @ else @ Vt(x’ d) — Vt—l(x FE d) + d ¥ price(d)

V[t, free cap] = max(V[t, free cap], best v + demand * best price)

optional tore price/demand leading to max
price table[t, free cap, demand] = best price
demand_table[t, free cap, demand] = demand

rows = []

for t in range(T):

for free cap in range(C):
for demand in range(min(D, free cap)+1):
V_t = V[t, free cap]
best price = price table[t, free cap, demand]
rows.append([t, free cap, V_t, best price, demand])

df v fast = pd.DataFrame(rows, columns=['t','free cap','V t','price t',6'demand t'])
return df_V_fast

Average Price over Time - Competition 3fU686

Dynamic Programming (Nick) e -

e Results (12-06-2025):
o Used static demand model params
(estimated from 23 days)
o Maybe | should use a couple DP tables.

Competition with highest revenue: 3fU686 (Total Revenue: 55563.299999999996)

revenue capacity utilization (cumulative sales) curves of all selling seasons

16 IntrepidBeluga $167,672 $41,918 $15.00 $100.00

° ° ° Average Price over Time - Competition 3hCoakK
al ® Competitor Avg Price +1SD
- i ® My Avg Price £1SD
| | L# D

%

e Results (12-08-2025):
o Used the overall parameters in the first 50
periods and estimated parameters for the
second 50.
o High standard deviation of price in the
second half

Average Price

40 60
Selling Period

Competition with highest revenue: 3hCoaK (Total Revenue: 147320.69999999998)

Demand Surface

capacity utilization (cumulative sales) curves of all selling seasons

revenue

44 IntrepidBeluga $268,055 $134,027 $1.00 $100.00 $19.91

Some overall statistics + visualization

Demand vs Price Difference

©
c
I
£
[N
(@]

—100 -50 0

Price Difference (my price - competitor's price)

Mean demand: 0.48915154639175257 Variance: 0.8504440125296269

Reflections & Next Steps

e |t seems that small values of theta in the OLS models tend to work better.
o Perhaps add regularization.

e We seem to not be stocking out enough (i.e. losing profits!). This contrasts the last competition’s performance
o We need to focus more on underpricing the competitor (i.e. better adversarial behavior).

e Computational feasibility is becoming an issue (particularly with Dynamic Programming)
o Ensure that the models developed are actually feasible within the time, explore fast approaches

e Maybe better demand models would yield better performance

Raphael

Which Forecast Model is the best?

e Accuracy
e Computation Time
e Parameter Settings

Competitor Types

e Variance of Prices
e Changes towards my prices

Low Var Med Var High Var

Low Attach

Med Attach

High Attach

Competitor Types

e Variance of Prices
e Changes towards my prices

Low Var Med Var High Var

Low Attach

Med Attach

High Attach | Copy Cat Copy Cat

Competitor Types

e Variance of Prices
e Changes towards my prices

Low Var Med Var High Var
Low Attach Random
Med Attach Random

High Attach | Copy Cat Copy Cat

Competitor Types

e Variance of Prices
e Changes towards my prices

Low Var Med Var High Var

Low Attach | Constant Random

Med Attach Random
High Attach | Copy Cat Copy Cat | am

Random

Competitor Types

e Variance of Prices

e Changes towards my prices

Low Var Med Var High Var
Low Attach Constant Random
Med Attach Random
High Attach | Copy Cat Copy Cat | am Random

Competitor Types

e Variance of Prices
e Changes towards my prices

Low Var Med Var High Var
Low Attach Constant Price-Adapt Random
Med Attach | Comp-Adapt | Complex Random

High Attach | Copy Cat Copy Cat | am Random

Competitor Types
o—Constant

+—Randem

—Copy-Cat

Adapt opp

Adapt price

Adapt complex
Unexpected Changes

Competitor Types

o—erRstant
o—Rapdern

Season 5

Adapt opp
Adapt price
Adapt complex
Unexpected Changes E

Competitor Types

o—Constant
o—Randem

—CopyCat
o—Adaptopp

e Adapt price

e Adapt complex

e Unexpected Changes

Competitor Types

o—Constant
o—Randem

—CopyCat
—Adaptepp

Season 12

e Adapt complex
e Unexpected Changes E

Competitor Types

o—Constant
o—Randem

—CopyCat

—Adaptepp
e Adapt price

e Unexpected Changes

Competitor Types

o—Rapdern

—Copy-Cat
O—Aela-p{—epp

e Adapt price

e Adapt complex

Competitor Types

e Adapt price
e Adapt complex
e Unexpected Changes

Forecast Models

from statsforecast.models import AutoETS, AutoARIMA, HoltWinters

HYPERPARAMETERS = {

"latest mean average": {"use this many latest steps": [1,2,

"last seasons values":{"sigma": [0.5, 1,

"exponential smoothing": {

"model": ["ZZZz", "AZZ", "AZN", "MZN",
"damped": [True, False]

b

"arimax": {
e [0, 1, 2],

"da": [0, 1, 21,
"gq": [0, 1, 21,
by
"holt winters": {
"season length": [12, 25, 100],
"mode": ["Add", "Multi"],

2, 41},

IIMZZ"] ,

S,

10,

5011},

Forecast Models

Setup:
- For Each Competition type:
- Sample 50 random points
- For Each Model Parameter Setup:
- Predict next price
- Calculate MAE

Analysis

Overall Model comparison - Mean Difference per Competition

o

.
S
e
=
w
[0}
1
2
=}
w
Q
<
c
I
7}
=

Analysis - Difficult Predictions

exponential_smoothing - Hyperparameter comparison
COMP: 2025-11-08_TZgXfS_adapting_competitor.csv, model_index=307, comp_row=1207
Last 50 competitor prices & next-step forecasts

-@— competitor_price (history) @® model=MZN, damped=True

® model=AZN, damped=False model=MZZ, damped=False

model=AZN, damped=True ® model=MZZ, damped=True
@® model=AZZ, damped=False model=ZZZ, damped=False
| J

model=AZZ, damped=True model=2ZZZ, damped=True W x
model=MZN, damped=False actual next
®

oA
<]
2
=
@
a
£
o
)
w
o
=
a

1170 1180 1190
row index in competition CSV

sis - Difficult Predictions

exponential_smoothing - Hyperparameter comparison
COMP: 2025-11-26_0XZr3Q_self adaptation.csv, model_index=226, comp_row=1126
Last 50 competitor prices & next-step forecasts

-@-— competitor_price (history) model=MZN, damped=True
@® model=AZN, damped=False model=MZZ, damped=False
model=AZN, damped=True @® model=MZZ, damped=True

@® model=AZZ, damped=False model=ZZZ, damped=False
@® model=AZZ, damped=True model=ZZZ, damped=True
@

model=MZN, damped=False actual next

>
o
!

W
w
!

-
o
L
=
@
Q
£
o
=
o
o
=
a

w
o
1

1100 1110
row index in competition CSV

Analysis - Difficult Predictions

holt_winters - Hyperparameter comparison
COMP: 2025-11-26_0oXZr3Q_self adaptation.csv, model_index=226, comp_row=1126
Last 50 competitor prices & next-step forecasts

-@- competitor_price (history) @® season_length=25, mode=Multi
@® season_length=12, mode=Add @® season_length=100, mode=Add
season_length=12, mode=Multi season_length=100, mode=Multi
@® season_length=25, mode=Add actual next

)
<]
=
=
]
=1
c
c
o
o
|
]
o
e
a

1100 1110
row index in competition CSV

Analysis - Difficult Predictions

arimax - Hyperparameter comparison
COMP: 2025-11-26_0XZr3Q_self adaptation.csv, model_index=226, comp_row=1126
Last 50 competitor prices & next-step forecasts

=@~ competitor_price (history) ® p=1.0,d=1.0,q=2.0
® p=0.0,d=0.0,q9=0.0 p=1.0, d=2.0, g=0.0
p=0.0, d=0.0, q=1.0 p=1.0, d=2.0, q=1.0
® p=0.0,d=00,q9=2.0 ® p=1.0,d=2.0,g=2.0
® p=0.0,d=1.0,qg=0.0 p=2.0, d=0.0, g=0.0
® p=0.0,d=1.0,qg=1.0 p=2.0, d=0.0, g=1.0
@ p=0.0,d=1.0,q=2.0 p=2.0, d=0.0, q=2.0
p=0.0, d=2.0, q=0.0 p=2.0,d=1.0, q=0.0
p=0.0, d=2.0, q=1.0 p=2.0,d=1.0, g=1.0
p=0.0, d=2.0, q=2.0 p=2.0,d=1.0, g=2.0
p=1.0, d=0.0, g=0.0 ® p=2.0,d=2.0,q=00
p=1.0, d=0.0, q=1.0 p=2.0,d=2.0, g=1.0
p=1.0, d=0.0, q=2.0 p=2.0,d=2.0,g=2.0
p=1.0,d=1.0, q=0.0 actual next
p=1.0,d=1.0, q=1.0

3
o
=
o=
[

Q.
£
o
o

|
[
©
I

Q

1100
row index in competition CSV

Analysis - Parameters

exponential_smoothing - Unexpected_c exponential_smoothing - Change_within_period
Hyperparameter Heatmap Hyperparameter Heatmap

Mean Absolute Error

8
S
[
[
o
=2
o
a
o
<
c
©
)
=

damped damped

Analysis - Adapt Comp - Expo. Smooth.

exponential_smoothing - Adapting_Comp
Hyperparameter Heatmap

Mean Absolute Error

Analysis - Adapt Comp - Holt-Winter

holt_winters - Adapting_Comp
Hyperparameter Heatmap

gth

)
c
L)
|
c
=]
wn
©
Q
]

Mean Absolute Error

Analysis - Adapt Comp - Arimax

arimax - Adapting_Comp (q=1)

arimax - Adapting_Comp (q=0)

arimax - Adapting_Comp (q=2)

Mean Absolute Error

nhalysis - Unexpected Changes

Exponential Smoothing Arimax

exponential_smoothing - Unexpected_changes arimax - Unexpected_changes (q=0)
Hyperparameter Heatmap

Mean Absolute Error

3
£
]
]
=]
]
2
r]
<
c
©
151
=

damped

Analysis - Only Best Hyperparameters

Best Hyperparameter per Model

o

.
S
e
=
w
[
1
=
]
a
Q
<

latest_mean_average exponential_smoothing last_seasons_values arimax holt_winters
use_this_many_latest_steps=1.0 model=AZN, damped=False sigma=1.0 p=1.0, d=1.0, q=2.0 season_length=12, mode=Add

Analysis - Only Best Hyperparameters

Best Hyperparameter per Model

.
S
e
=
w
[
o
=
]
v
Q
<

latest_mean_average exponential_smoothing last_seasons_values arimax holt_winters
use_this_many_latest_steps=1.0 model=AZN, damped=False sigma=1.0 p=1.0,d=1.0, q=2.0 season_length=12, mode=Add

Analysis - Outliers of exp. smoothing

All models & hyperparameters on exponential_smoothing outlier tasks
(absolute error vs. task_id)

®- arimax | p=0, d=1, q=2 @~ holt_winters | season_length=100, mode=Multi
exponential_smoothing | model=AZN, damped=False

%
e
E
@
o
]
=
]
v
a
m©

task_id (outlier tasks index)

Analysis - Outlier Model Correlations

Correlation between models

arimax

holt_winters

sis - Qutliers

Outlier 8 - Forecast Comparison

competitor history
arimax (0,1,2)
holt-winters (100,Mult)
exp_smoothing (best)
actual

>
o
1

w
o
1

o
o
=
a
=
S
=
=1
@
a
£
S
O

N
o
1

970
Competition index

Analysis - Breakdown

e On average exponential smoothing predicted best on

given competitions.
e At some tasks, holt-winter (Mult & 100 seasons) might be

better

What about the computation time?

Analysis - Time Analysis - expo smooth

exponential_smoothing - duration_s by hyperparameter combination

(o Je)

o

v
o
c
o
o
[}
2
w
c
o
=
©
£
S
°

QD GD GIBDO @O OO M O

O OO OO ® DO
O WO O @ @ ®O

-

T T T T T T T T T T
model=AZN model=AZN model=AZZ model=AZZ model=MZN model=MZN model=MZZ model=MZZ model=ZZZ model=ZZZ
damped=False damped=True damped=False damped=True damped=False damped=True damped=False damped=True damped=False damped=True

Analysis - Time Analysis - holt winter

holt_winters - duration_s by hyperparameter combination

w

v
°
c
S
o
I}
g
wv
c
o
=1
©
i
S
°

N

season_length=12 season_length=12 season_length=25 season_length=25

mode=Add mode=Multi mode=Add mode=Multi

Analysis - Time Analysis - holt winter

Forecast Models - Changed Setup

Setup:
- For Each Competition:
- Sample 12 random points
- For Each Model Parameter Setup:
- Predict next price
- Calculate MAE

sis - All Data

Best Hyperparameter per Model Across Broad Runs
(Boxplot of ALL Absolute Errors for Best Hyperparams)

(e]

-
S
£
B
w
[
o
=
]
v
Q
<

latest_mean_average exponential_smoothing arimax holt_winters last_seasons_values
use_this_many_latest_steps=1.0 model=AZN, damped=True p=1.0, d=1.0, q=0.0 season_length=12, mode=Add sigma=4.0

sis - All Data

Best Hyperparameter per Model Across Broad Runs
(Boxplot of ALL Absolute Errors for Best Hyperparams)

-
o
=
=
w
[
o
3
o
9
Qo
<

T T
arimax holt_winters last_seasons_values
season_length=12, mode=Add sigma=4.0

latest_mean_average exponential_smoothing
use_this_many_latest_steps=1.0 model=AZN, damped=True p=1.0, d=1.0, g=0.0

sis - Outlier Comparison

Outlier Run 2025-11-05_3JcqTX.csv - Boxplot of abs_diff per Model
(each model uses its BEST hyperparameter combo for this run)

N
o
s

=
¥]
L

=
7}
o
b1
(7}
a
I
3
[}
=
2
st
=
°
0
Q
©

[
o
L

sis - Outlier Comparison

Outlier Run 2025-10-20_nick_34XjaN.csv - Boxplot of abs_diff per Model
(each model uses its BEST hyperparameter combo for this run)

=
w
L

=
o
L

o
[
=
b~
7]
a
I
£
]
=
2
E
T
w
Q
©

e
o
=
S
7]
Q
£
IS
=
o
o
=
a

sis - Outlier Comparison

Deep Dive 2025-10-20_nick_34XjaN.csv - model_index=8915, comp_row=9815

Last 100 competitor prices & model forecasts

A
A
%

—-8— competitor_price (history)

latest_mean_average forecast
last_seasons_values forecast
arimax forecast
exponential_smoothing forecast
holt_winters forecast

actual next

9760
row index in competition CSV

Analysis - Outlier Comparison

Sadly it is expensive

Analysis - Outller Comparlson

Conclusion (Raph)

e EXxponential Smoothing works well in this duopoly
o Still analyse the competitions, where exponential
smoothing fails
o Maybe there is a better algorithm out there
e Rather spend computation time on a better demand
model

All models are wrong, but
some are useful

1976, George Box

