Presentation 1

OLS + Capacity

Group: WiseGoose-IntrepidBeluga

Members: Nicholas Chandler, Raphael Bergner

Agenda

o1y Nick's Approaches

1. Baseline
Esapamty Curves

022 Raphael's Approaches

1. Baseline , ,
2. Implementation Details
3. Competition Deep Dive

Nick

Baseline (Nick)

Baseline:
- Assume demand is approximately equally distributed over time
- Adjust price based on remaining inventory vs. expected, given
assumptions
- Sell more if competitor is out and consider the time in the season.
- Repeated this from 10-8-25 to 10-20-25 (and 10-22-25 to 10-29-25)

remaining

i
1)) 5 (1cr_|mpctimr in stock 1 B- 1competitor out ufstu(*k) sl %Y
Tscnsou

Q . S
expected_remaining

exynectec inventorv remaining 1 ayve
¢) ¢ L€ 1

periods left = max(1, T SEASON - (selling period in current season - 1))
expected remaining = C _INIT * (periods left / T SEASON)

ratio = remaining / expected remaining if expected remaining > 0@ else 1.0

DI 2 adiustment based o1 nventor rat
AT 1(* Qvers -S> requce price

- 10 < . nnderc -~ raise price

BASE PRICE * (1 - AGGRESSIVENESS * (ratio - 1))

)
-
(S8
(@]
(1/]

Il

Accounting for demand
Accounting for monopoly

Accounting for the time left

Core of Algo.

Baseline (Nick)

Results from best baseline competition day:
- Run on 10-20-25
- Investigation of the trimodal revenue distribution
yielded few patterns...

revenue Demand Surface

J

1000 2000 3000 4000

IntrepidBeluga $1,259,441 $314,860 { $1.00

capacity utilization (cumulative sales) curves of top 20% revenue selling_seasons

$100.00

$44.04

selling_periods

Baseline (Nick)

Results from best baseline competition day:
- Run on 10-20-25
- Maybe the competitor just priced poorly...

Competition with highest revenue: 3mgFsj (Total Revenue: 468015.8)

Average Price over Time - Competition 3mqFs;j Median Demand per Selling Period with Uncertainty - Competition 3mqfs;j

—— Median

® Competitor Avg Price +1SD 25th-75th percentile

® My Avg Price £1SD

Mll il H m

dsl‘-f'

T w H\m.

! HI‘HH R AR | L wT

Capacity Curves | (Nick)

- Similar oversold/undersold based on expected selling amount

- Season level

- Now we account for the change in sales based on our target

- Time-step level

- Adds an additional constraint to ensure we don't sell out early

- Tested on 10-22-25

== PRICE

price = last price # default: ame]
if selling period in current season in target curve:

target sales = target curve[selling period in current season]["sold seats

if target sales > 0O:

delta_sales = (current sold seats - target sales) / target sales

inv_adjustment = -INVENTORY SENSITIVITY * (remaining ratio -

combined delta = delta sales + inv_adjustment

adj factor = np.clip(1l + combined delta, 1 - ADJUSTMENT CAP,

price = last price * adj factor

21

1 + ADJUSTMENT

Mean capacity curve of best seasons

Median Demand per Selling Period with Uncertainty - Competition Pk4xga

Capacity Curves | (Nick) B

Result:
- Lower placement but better following of the target curve
- More dynamic pricing
- Lower revenue overall (but nicer distribution) | ‘ ‘ |
- 10-22-25 :

Average Price over Time - Competition Pk4xga

revenue Demand Surface
® Competitor Avg Price £1SD
® My Avg Price £1SD

| "I"l“l“l'"'“’""'lllll!"'llll"|||u"

i
N
nll
‘
;Illllllln‘ " i)
I

40 60

1000 1500 2000 ¥ 6
Selling Period

Competition with highest revenue: Pk4xga (Total Revenue: 296860.3)

18 IntrepidBeluga $§763,955 $190,989 $1.00 $100.00

Capacity Curves Il (Nick)

- This time we incorporated randomized capacity curves as in the lecture

- Intheory we select a new target curve at at various checkpoints and do
the same as the other capacity curve approach

- My approach was buggy (often too expensive) however so the results
were subpar

- Done on 10-29-25

- Lesson: Pricing too high will destroy returns

Competition with highest revenue: 3bPYXV (Total Revenue: 40452.6)

Demand Surface . . 5 .
revenue Average Price over Time - Competition 3bPYXV

® Competitor Avg Price +1SD
® My Avg Price £1SD

Selling Period

IntrepidBeluga 68,307 $34,15: 2 $13.40 $100.00

LS (Nick)

Tried RLS demand model (Recursive Least Squares): Used estimated demand to price:

Prediction Error: et =y — & 01 S ENERCRVYIE D (), p,) = 6 + 61p + fop.
P

Gain Vector: K - Revenue Function:

t_)\-Jr‘(l!;Pf 1&L¢

Parameter Update: 0, =0, 4 Ke; - Optimization of R: QE T

Covariance Update: JEyy STy e N)

<
X

Idea: Update the demand model as data flows in, use analytically optimal price given demand model.

LS (Nick)

Way messier in practice. (11-1-25)
- Needed to clip/clamp for numerical under/overflow Db SuEtaEe
- Estimates tended to be pretty awful a lot of the time
= Model doesn't fit the environment very well
- First run encountered adversarial competitors
- Had a bug in the code with my floor after competitor runs out function...

IntrepidBeluga $31,620 $1.00 $100.00 $18.98

revenue

LS (Nick)

Try again without the bugs. (11-3-25)
- Same as before but without the end-undercutting bug (removed undercutting)
- Had 5% random chance of pricing $5 below the competitor’s last price
- Maybe lower initial price would be better to nix the late-selling seasons

Average Price over Time - Competition ZjZoxm

D : ; ; 100+ ® Competitor Avg Price 15D
Competition with highest revenue: ZjZoxm (Total Revenue: 294460.1) ® My Avg Price £15D
capacity utilization (cumulative sales) curves of all selling seasons 80 -
Demand Surface
Q
—
& 60 -
{1 |
2 ” e
]
>
x
40
-17
20 -
T - 1.5(
s
£ 12 : : : it !
seling periods g o 0 20 40 60 80 100
capacity utilization (cumulative sales) curves of top 20% revenue selling_seasons © Selling Period
| —
- 0.75 é Median Demand per Selling Period with Uncertainty - Competition ZjZoxm
—— Median
- 0.5(25th-75th percentile
175
i
-
0.00
0
5
3
0.25

15 IntrepidBeluga $852,919 §213,230 1 $1.00 $100.00 $36.98 0.816 0.34 ’ S s

More Analysis (Nick)

What insights can we glean from lots of price + demand data? (12 competition days)
- We ignore the non-stationarity of the demand with these plots

High demand (>6) rarely occurs when my price is above my competitor’s
Future Work:

°
=
o
£
o
[a]

Look at more complex modeling of demand?
Implement smarter adversarial behavior

-100 -75 =50 =25 0 25 50 75
Price Difference (my price - competitor's price)

Demand Surface Demand Surface Demand Surface

60 80

© 80
Competitor Price

60 40
Your Price

Raphael

Baseline (Raph)

Demand is a step function dependent on my price

2. Estimate competitors price using historic data, and
move closer towards his likely set price

3. Keep track of your stock and set price to match a

linear utilization curve

—

Baseline (Raph)

Demand is a step function dependent on my price

2. Estimate competitors price using historical data, and
move closer towards his likely set price

3. Keep track of your stock and set price to match a

linear utilization curve

Ranking

—

Results from 10-20-25

Avg Revenue Avg Ranking
Overall Total Mean Autocorrelation Stockout
; er per ;
Ranking Revenue) p) ¢ Price Price Frequency
Simulation Simulation

1 WiseGoose - $445,363 1.75 $68.50 0.593 0.318

2 WhimsicalMarten $421,031 1 $53.89 0.743 0.425

Demand Estimation (Raph)

Demand as a Step-Function
e Good for testing
e Decent base-line

if selling period in current season < 50:
my demand ranges = {4: np.nan, 3: 40, 2: 60, 1: 80, 0: 90}
else:

my demand ranges = {4: 35, 3: 50, 2: 75, 1: 90, 0: 100}

Demand Estimation (Raph)

Demand ranges before and after period 50

Targets
demand 4 (=50)
demand 3 (<50)
demand 3 (=50)
demand 2 (<50)
demand 2 (=50)
demand 1 (<50)
demand 1 (=50)
demand 0 (<50)
demand 0 (=50)

Demand Estimation (Raph)

Demand ranges before and after period 50

Targets
demand 4 (=
demand 3 (<50)
demand 3 (=50)
demand 2 (<50)
demand 2 (=50)
demand 1 (<50)
demand 1 (=50)
demand 0 (<50)
demand 0 (=50)

Competitor Adjustments (Raph)

Comparison of Pricing Adjustment Functions

—— Adjustment Function
---- My Price (m)

def comp linear (c: float, m: float)

-> float:

[«
o

if np.isnan (m) :

return np.nan

W
v
=
a
o
c
=
=3
n
7}
[+ 4

w
o

diff = abs(m - c¢)
if diff < 0.001:
return m
perc = min(m, c)/max(m, c)
if m > c:

60
= 1 *
o=etize il il perc Competitor Price (c)

return m + diff * perc

Linear Interpolation (Raph)

def next price estimator (demand ranges, period, stock left, days left, lower demand, upper demand) :

expected demand to sell for = estimate next need demand(period, stock left)

lower demand np.floor (expected demand to sell for)

upper demand np.ceil (expected demand to sell for)
lower = demand ranges[lower demand]

upper = demand ranges [upper demand]

stock per day = stock left/days left

percentage = stock per day - np.floor(stock per day)

return (upper - lower) * percentage + lower

Linear Interpolation (Raph)

def next price estimator (demand ranges, period, stock left, days left, lower demand, upper demand) :

expected demand to sell for = estimate next need demand(period, stock left)

lower demand np.floor (expected demand to sell for)

upper demand np.ceil (expected demand to sell for)
lower = demand ranges[lower demand]

upper = demand ranges [upper demand]

stock per day = stock left/days left

percentage = stock per day - np.floor(stock per day)

return (upper - lower) * percentage + lower

Linear Interpolation (Raph)

def next price estimator (demand ranges, period, stock left, days left, lower demand, upper demand) :

expected demand to sell for = estimate next need demand(period, stock left)

lower demand np.floor (expected demand to sell for)

upper demand np.ceil (expected demand to sell for)
lower = demand ranges[lower demand]

upper = demand ranges [upper demand]

stock per day = stock left/days left

percentage = stock per day - np.floor(stock per day)

return (upper - lower) * percentage + lower

Linear Interpolation (Raph)

def next price estimator (demand ranges, period, stock left, days left,

lower demand,

expected demand to sell for = estimate next need demand(period, stock left)

lower demand

upper demand

upper = demand

np.floor (expected demand to sell for)
np.ceil (expected demand to sell for)

ranges [lower demand]

lower = demand ranges[upper demand]

stock per day

stock left/days left

percentage = stock per day - np.floor(stock per day)

return (upper - lower) * percentage + lower

upper demand) :

if selling period in current season < 50:

my demand ranges
else:

my demand ranges

{4:

{4:

np.nan,

35,

33

33

50,

40,

23

23

75,

60,

1:

1lg

90,

80,

0:

03

100}

90}

Linear Interpolation (Raph)

def next price estimator (demand ranges, period, stock left, days left, lower demand, upper demand) :

expected demand to sell for = estimate next need demand(period, stock left)

lower demand np.floor (expected demand to sell for)

upper demand np.ceil (expected demand to sell for)
upper = demand ranges[lower demand]

lower = demand ranges[upper demand]

stock per day = stock left/days left

percentage = stock per day - np.floor(stock per day)

return (upper - lower) * percentage + lower

Capacity Curves (Raph

Overall Utilization Curves by Competition

—— 48R3r7

49AmoE
—— 4EDzGw
—— w535nk

5
]
N
©
£
1
(]
=1
=]
c
©
£
(]
©
<))
>
=
o
>
£
=]
(@]

40 60
selling_period

Capacity Curves - differences (Raph

Utilization Within Competition — 48R3r7 — WhimsicalMarten — selling_season Utilization Within Competition — w535nk — ScrupulousZebu — selling_season

o
®

o
o

o
S

=)
GJ
N
©
£
£
=}
=
°
=
©
£
@
T
[
2
]
©
=]
E
3
(o]

Cumulative demand (normalized)

o
N

40 60
selling_period

selling_period

Capacity Curves - price differences
Raph

Avg Price Difference Over Time
Competition: 48R3r7

Avg Price Difference Over Time
Competition: w535nk

o o
s} s}
2 =
& I
= =
S S
2 S
=1 =4
[} [}
o o
= £
S S
o o
o o
o o
= E
o I
> >
= =

40 60
Selling Period

40 60
Selling Period

Capacity Curves - price differences
Raph

Avg Price Difference wit riance — 48R3r7 — WhimsicalMarten Avg Price Difference with Variance — w535nk — ScrupulousZebu

—— mean(price — competitor_price)
+10 (per period)

Q Q
g g
= b =
a. a.
» -
o o
g g
= =
[[
Q Q
z £
(=} (s}
o o
| |
Q Q
g g
=4 =
a a
> >
= =

—— mean(price — competitor_price)
+10 (per period)

40 60
selling_period

40 60
selling_period

Capacity Curves - price distributions -
good case (Raph

48R3r7 — WhimsicalMarten — Your Price 48R3r7 — WhimsicalMarten — Competitor Price

40 60 40 60
selling_period selling_period

Capacity Curves - price distributions -
good case (Raph

48R3r7 — WhimsicalMarten — Your Price (colored by demand) - 48R3r7 — WhimsicalMarten — Competitor Price (colored by demand)

40 60 40 60
selling_period selling_period

lons -

Ibut

ISTr

d

- price

S
(Raph)

Curve

Capacity
bad case

ScrupulousZebu — Competitor Price

w535nk

o
O
=
a
—
3
>
3
Q
@
N
0w
3
o
-
o
3
—
L%
n

w535nk

selling_period

selling_period

IONS -

distribut

ICE

pri
Raph)

Capacity Curves -
bad case (

ScrupulousZebu — Competitor Price (colored by demand)

w535nk

=l
c
©
£
(]
T
>
Q
o
[
A~
o
[<}
IFW
[
o
=
a
—
g
>=
3
Qo
e
N
[
3
L)
3
Q
3
—
(%}
(2}

w535nk

puewsp
m o~

selling_period

selling_period

High Demand vs Random Competitor
Raph

49AmMoE — ScrupulousZebu — Your Price (colored by demand) 166 49AmMoE — ScrupulousZebu — Competitor Price (colored by demand)

40 60 40 60
selling_period selling_period

High Demand vs Random Competitor
Raph

Utilization Within Competition — 49AmoE — ScrupulousZebu — selling_season
Avg Price Difference with Variance — 49AmoE — ScrupulousZebu

[}
o
=
a
.
S
S
=1
[}
Q
E
IS}
(&)
|
[}
o}
=
a
>
=

Cumulative demand (normalized)

—— mean(price — competitor_price)
+10 (per period)

40 60

selling_period 40 60

selling_period

Difference to Random in high Demand

Utilization Within Competition — 48R3r7 — WhimsicalMarten — selling_season Utilization Within Competition — 49AmoE — ScrupulousZebu — selling_season

*lo
mean

°

©
o
™

0.6

o
o

o
S
L

Cumulative demand (normalized)
o
=y

T
]
N
©
£
£
S
=
°
c
©
£
@
o
o
2
=
i
>
£
E
O

o
N
L
o
N

40 60 40 60
selling_period selling_period

Difference to Random in high Demand

Utilization Within Competition — 48R3r7 — WhimsicalMarten — selling_season Utilization Within Competition — 49AmoE — ScrupulousZebu — selling_season

*lo
mean

°

©
o
™

0.6

o
o

o
S
L

Cumulative demand (normalized)
o
=y

T
]
N
©
£
£
S
=
°
c
©
£
@
o
o
2
=
i
>
£
E
O

o
N
L
o
N

40 60 40 60
selling_period selling_period

Conclusion (Raph)

Next Improvement:

e The base prices in the dictionary need be be set
dynamically
e Better Competitor adjustments

Thank you for your attention

