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Baseline (Nick)

Baseline:
- Assume demand is approximately equally distributed over time
- Adjust price based on remaining inventory vs. expected, given
assumptions
- Sell more if competitor is out and consider the time in the season.
- Repeated this from 10-8-25 to 10-20-25 (and 10-22-25 to 10-29-25)
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Accounting for demand
Accounting for monopoly

Accounting for the time left

Core of Algo.




Baseline (Nick)

Results from best baseline competition day:
- Run on 10-20-25
- Investigation of the trimodal revenue distribution
yielded few patterns...
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Baseline (Nick)

Results from best baseline competition day:
- Run on 10-20-25
- Maybe the competitor just priced poorly...

Competition with highest revenue: 3mgFsj (Total Revenue: 468015.8)
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Capacity Curves | (Nick)

- Similar oversold/undersold based on expected selling amount

- Season level

- Now we account for the change in sales based on our target

- Time-step level

- Adds an additional constraint to ensure we don't sell out early

- Tested on 10-22-25

== PRICE

price = last price # default: ame]
if selling period in current season in target curve:

target sales = target curve[selling period in current season]["sold seats

if target sales > 0O:

delta_sales = (current sold seats - target sales) / target sales

inv_adjustment = -INVENTORY SENSITIVITY * (remaining ratio -

combined delta = delta sales + inv_adjustment

adj factor = np.clip(1l + combined delta, 1 - ADJUSTMENT CAP,

price = last price * adj factor

21

1 + ADJUSTMENT

Mean capacity curve of best seasons



Median Demand per Selling Period with Uncertainty - Competition Pk4xga

Capacity Curves | (Nick) B

Result:
- Lower placement but better following of the target curve
- More dynamic pricing
- Lower revenue overall (but nicer distribution) | ‘ ‘ |
- 10-22-25 :

Average Price over Time - Competition Pk4xga
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Competition with highest revenue: Pk4xga (Total Revenue: 296860.3)

18 IntrepidBeluga $§763,955 $190,989 $1.00 $100.00




Capacity Curves Il (Nick)

- This time we incorporated randomized capacity curves as in the lecture

- Intheory we select a new target curve at at various checkpoints and do
the same as the other capacity curve approach

- My approach was buggy (often too expensive) however so the results
were subpar

- Done on 10-29-25

- Lesson: Pricing too high will destroy returns

Competition with highest revenue: 3bPYXV (Total Revenue: 40452.6)

Demand Surface . . 5 .
revenue Average Price over Time - Competition 3bPYXV
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IntrepidBeluga 68,307 $34,15: 2 $13.40 $100.00




LS (Nick)

Tried RLS demand model (Recursive Least Squares): Used estimated demand to price:

Prediction Error: et =y — & 01 S ENERCRVYIE D (), p,) = 6 + 61p + fop.
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Idea: Update the demand model as data flows in, use analytically optimal price given demand model.




LS (Nick)

Way messier in practice. (11-1-25)
- Needed to clip/clamp for numerical under/overflow Db SuEtaEe
-  Estimates tended to be pretty awful a lot of the time
= Model doesn't fit the environment very well
- First run encountered adversarial competitors
- Had a bug in the code with my floor after competitor runs out function...

IntrepidBeluga $31,620 $1.00 $100.00 $18.98



revenue

LS (Nick)

Try again without the bugs. (11-3-25)
- Same as before but without the end-undercutting bug (removed undercutting)
- Had 5% random chance of pricing $5 below the competitor’s last price
- Maybe lower initial price would be better to nix the late-selling seasons
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More Analysis (Nick)

What insights can we glean from lots of price + demand data? (12 competition days)
- We ignore the non-stationarity of the demand with these plots

High demand (>6) rarely occurs when my price is above my competitor’s
Future Work:
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Look at more complex modeling of demand?
Implement smarter adversarial behavior
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Raphael




Baseline (Raph)

Demand is a step function dependent on my price

2. Estimate competitors price using historic data, and
move closer towards his likely set price

3. Keep track of your stock and set price to match a

linear utilization curve

—




Baseline (Raph)

Demand is a step function dependent on my price

2. Estimate competitors price using historical data, and
move closer towards his likely set price

3. Keep track of your stock and set price to match a

linear utilization curve

Ranking

—

Results from 10-20-25

Avg Revenue Avg Ranking
Overall Total Mean Autocorrelation Stockout
; er per ;
Ranking Revenue ) p ) ¢ Price Price Frequency
Simulation Simulation

1 WiseGoose - $445,363 1.75 $68.50 0.593 0.318

2 WhimsicalMarten $421,031 1 $53.89 0.743 0.425




Demand Estimation (Raph)

Demand as a Step-Function
e Good for testing
e Decent base-line

if selling period in current season < 50:
my demand ranges = {4: np.nan, 3: 40, 2: 60, 1: 80, 0: 90}
else:

my demand ranges = {4: 35, 3: 50, 2: 75, 1: 90, 0: 100}




Demand Estimation (Raph)

Demand ranges before and after period 50

Targets
demand 4 (=50)
demand 3 (<50)
demand 3 (=50)
demand 2 (<50)
demand 2 (=50)
demand 1 (<50)
demand 1 (=50)
demand 0 (<50)
demand 0 (=50)




Demand Estimation (Raph)

Demand ranges before and after period 50

Targets
demand 4 (=
demand 3 (<50)
demand 3 (=50)
demand 2 (<50)
demand 2 (=50)
demand 1 (<50)
demand 1 (=50)
demand 0 (<50)
demand 0 (=50)




Competitor Adjustments (Raph)

Comparison of Pricing Adjustment Functions

—— Adjustment Function
---- My Price (m)

def comp linear (c: float, m: float)

-> float:
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if np.isnan (m) :

return np.nan
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diff = abs(m - c¢)
if diff < 0.001:
return m
perc = min(m, c)/max(m, c)
if m > c:

60
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o=etize il il perc Competitor Price (c)

return m + diff * perc




Linear Interpolation (Raph)

def next price estimator (demand ranges, period, stock left, days left, lower demand, upper demand) :

expected demand to sell for = estimate next need demand(period, stock left)

lower demand np.floor (expected demand to sell for)

upper demand np.ceil (expected demand to sell for)
lower = demand ranges[lower demand]

upper = demand ranges [upper demand]

stock per day = stock left/days left

percentage = stock per day - np.floor(stock per day)

return (upper - lower) * percentage + lower




Linear Interpolation (Raph)

def next price estimator (demand ranges, period, stock left, days left, lower demand, upper demand) :

expected demand to sell for = estimate next need demand(period, stock left)

lower demand np.floor (expected demand to sell for)

upper demand np.ceil (expected demand to sell for)
lower = demand ranges[lower demand]

upper = demand ranges [upper demand]

stock per day = stock left/days left

percentage = stock per day - np.floor(stock per day)

return (upper - lower) * percentage + lower




Linear Interpolation (Raph)

def next price estimator (demand ranges, period, stock left, days left, lower demand, upper demand) :

expected demand to sell for = estimate next need demand(period, stock left)

lower demand np.floor (expected demand to sell for)

upper demand np.ceil (expected demand to sell for)
lower = demand ranges[lower demand]

upper = demand ranges [upper demand]

stock per day = stock left/days left

percentage = stock per day - np.floor(stock per day)

return (upper - lower) * percentage + lower




Linear Interpolation (Raph)

def next price estimator (demand ranges, period, stock left, days left,

lower demand,

expected demand to sell for = estimate next need demand(period, stock left)

lower demand

upper demand

upper = demand

np.floor (expected demand to sell for)
np.ceil (expected demand to sell for)

ranges [lower demand]

lower = demand ranges[upper demand]

stock per day

stock left/days left

percentage = stock per day - np.floor(stock per day)

return (upper - lower) * percentage + lower

upper demand) :

if selling period in current season < 50:

my demand ranges
else:

my demand ranges

{4:

{4:

np.nan,
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Linear Interpolation (Raph)

def next price estimator (demand ranges, period, stock left, days left, lower demand, upper demand) :

expected demand to sell for = estimate next need demand(period, stock left)

lower demand np.floor (expected demand to sell for)

upper demand np.ceil (expected demand to sell for)
upper = demand ranges[lower demand]

lower = demand ranges[upper demand]

stock per day = stock left/days left

percentage = stock per day - np.floor(stock per day)

return (upper - lower) * percentage + lower




Capacity Curves (Raph

Overall Utilization Curves by Competition
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Capacity Curves - differences (Raph

Utilization Within Competition — 48R3r7 — WhimsicalMarten — selling_season Utilization Within Competition — w535nk — ScrupulousZebu — selling_season
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Capacity Curves - price differences
Raph

Avg Price Difference Over Time
Competition: 48R3r7

Avg Price Difference Over Time
Competition: w535nk
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Capacity Curves - price differences
Raph

Avg Price Difference wit riance — 48R3r7 — WhimsicalMarten Avg Price Difference with Variance — w535nk — ScrupulousZebu
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Capacity Curves - price distributions -
good case (Raph

48R3r7 — WhimsicalMarten — Your Price 48R3r7 — WhimsicalMarten — Competitor Price

40 60 40 60
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Capacity Curves - price distributions -
good case (Raph

48R3r7 — WhimsicalMarten — Your Price (colored by demand) - 48R3r7 — WhimsicalMarten — Competitor Price (colored by demand)
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High Demand vs Random Competitor
Raph

49AmMoE — ScrupulousZebu — Your Price (colored by demand) 166 49AmMoE — ScrupulousZebu — Competitor Price (colored by demand)
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High Demand vs Random Competitor
Raph

Utilization Within Competition — 49AmoE — ScrupulousZebu — selling_season
Avg Price Difference with Variance — 49AmoE — ScrupulousZebu
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Difference to Random in high Demand

Utilization Within Competition — 48R3r7 — WhimsicalMarten — selling_season Utilization Within Competition — 49AmoE — ScrupulousZebu — selling_season
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Difference to Random in high Demand

Utilization Within Competition — 48R3r7 — WhimsicalMarten — selling_season Utilization Within Competition — 49AmoE — ScrupulousZebu — selling_season
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Conclusion (Raph)

Next Improvement:

e The base prices in the dictionary need be be set
dynamically
e Better Competitor adjustments




Thank you for your attention




