
1

Presentation 1
OLS  Capacity

Group: WiseGoose-IntrepidBeluga

Members: Nicholas Chandler, Raphael Bergner

01

02

Agenda

2

1. Baseline
2. Capacity Curves
3. LS

Nickʼs Approaches

Raphaelʼs Approaches
1. Baseline
2. Implementation Details
3. Competition Deep Dive

Nick

Baseline Nick
Baseline:

- Assume demand is approximately equally distributed over time
- Adjust price based on remaining inventory vs. expected, given

assumptions
- Sell more if competitor is out and consider the time in the season.
- Repeated this from 10825 to 102025 (and 102225 to 102925

Core of Algo.

Accounting for demand
Accounting for monopoly

Accounting for the time left

Baseline Nick
Results from best baseline competition day:

- Run on 102025
- Investigation of the trimodal revenue distribution

yielded few patterns…

Baseline Nick
Results from best baseline competition day:

- Run on 102025
- Maybe the competitor just priced poorly…

Capacity Curves I Nick
- Similar oversold/undersold based on expected selling amount

- Season level
- Now we account for the change in sales based on our target

- Time-step level
- Adds an additional constraint to ensure we donʼt sell out early
- Tested on 102225

Mean capacity curve of best seasons

Target capacity curve over time

Capacity Curves I Nick
Result:

- Lower placement but better following of the target curve
- More dynamic pricing
- Lower revenue overall (but nicer distribution)
- 102225

Capacity Curves II Nick
- This time we incorporated randomized capacity curves as in the lecture
- In theory we select a new target curve at at various checkpoints and do

the same as the other capacity curve approach
- My approach was buggy (often too expensive) however so the results

were subpar
- Done on 102925

- Lesson: Pricing too high will destroy returns

LS Nick
Tried RLS demand model Recursive Least Squares):

- Prediction Error:

- Gain Vector:

- Parameter Update:

- Covariance Update:

Used estimated demand to price:

- Demand Model:

- Revenue Function:

- Optimization of R

Idea: Update the demand model as data flows in, use analytically optimal price given demand model.

LS Nick
Way messier in practice. 11125

- Needed to clip/clamp for numerical under/overflow
- Estimates tended to be pretty awful a lot of the time

⇒ Model doesnʼt fit the environment very well
- First run encountered adversarial competitors
- Had a bug in the code with my floor after competitor runs out function…

LS Nick
Try again without the bugs. 11325

- Same as before but without the end-undercutting bug (removed undercutting)
- Had 5% random chance of pricing $5 below the competitorʼs last price
- Maybe lower initial price would be better to nix the late-selling seasons

More Analysis Nick
What insights can we glean from lots of price + demand data? 12 competition days)

- We ignore the non-stationarity of the demand with these plots
- High demand 6) rarely occurs when my price is above my competitorʼs

Future Work:
- Look at more complex modeling of demand?
- Implement smarter adversarial behavior

Raphael

Baseline Raph
1. Demand is a step function dependent on my price
2. Estimate competitors price using historic data, and

move closer towards his likely set price
3. Keep track of your stock and set price to match a

linear utilization curve

Baseline Raph
1. Demand is a step function dependent on my price
2. Estimate competitors price using historical data, and

move closer towards his likely set price
3. Keep track of your stock and set price to match a

linear utilization curve
- Results from 102025

Demand Estimation Raph
DDemand as a Step-Function

● Good for testing
● Decent base-line

 if selling_period_in_current_season < 50:

 my_demand_ranges = {4: np.nan, 3: 40, 2: 60, 1: 80, 0: 90}

 else:

 my_demand_ranges = {4: 35, 3: 50, 2: 75, 1: 90, 0: 100}

demand price

Demand Estimation Raph

Demand Estimation Raph
Example:
Period = 40
Stock left = 20
⇒ 60 periods left to sell 60
seats, meaning 1 seat per
period
⇒ set price to 80

Competitor Adjustments Raph

def comp_linear(c: float, m: float)

-> float:

 if np.isnan(m):

 return np.nan

 diff = abs(m - c)

 if diff < 0.001:

 return m

 perc = min(m, c)/max(m, c)

 if m > c:

 return m - diff * perc

 return m + diff * perc

Linear Interpolation Raph
def next_price_estimator(demand_ranges, period, stock_left, days_left, lower_demand, upper_demand):

 expected_demand_to_sell_for = estimate_next_need_demand(period, stock_left)

 lower_demand = np.floor(expected_demand_to_sell_for)

 upper_demand = np.ceil(expected_demand_to_sell_for)

 lower = demand_ranges[lower_demand]

 upper = demand_ranges[upper_demand]

 stock_per_day = stock_left/days_left

 percentage = stock_per_day - np.floor(stock_per_day)

 return (upper - lower) * percentage + lower

Linear Interpolation Raph
def next_price_estimator(demand_ranges, period, stock_left, days_left, lower_demand, upper_demand):

 expected_demand_to_sell_for = estimate_next_need_demand(period, stock_left)

 lower_demand = np.floor(expected_demand_to_sell_for)

 upper_demand = np.ceil(expected_demand_to_sell_for)

 lower = demand_ranges[lower_demand]

 upper = demand_ranges[upper_demand]

 stock_per_day = stock_left/days_left

 percentage = stock_per_day - np.floor(stock_per_day)

 return (upper - lower) * percentage + lower

How many seats to sell now
As float, example: 1.2

Linear Interpolation Raph

Look up keys to find base
price}

def next_price_estimator(demand_ranges, period, stock_left, days_left, lower_demand, upper_demand):

 expected_demand_to_sell_for = estimate_next_need_demand(period, stock_left)

 lower_demand = np.floor(expected_demand_to_sell_for)

 upper_demand = np.ceil(expected_demand_to_sell_for)

 lower = demand_ranges[lower_demand]

 upper = demand_ranges[upper_demand]

 stock_per_day = stock_left/days_left

 percentage = stock_per_day - np.floor(stock_per_day)

 return (upper - lower) * percentage + lower

Linear Interpolation Raph
def next_price_estimator(demand_ranges, period, stock_left, days_left, lower_demand, upper_demand):

 expected_demand_to_sell_for = estimate_next_need_demand(period, stock_left)

 lower_demand = np.floor(expected_demand_to_sell_for)

 upper_demand = np.ceil(expected_demand_to_sell_for)

 upper = demand_ranges[lower_demand]

 lower = demand_ranges[upper_demand]

 stock_per_day = stock_left/days_left

 percentage = stock_per_day - np.floor(stock_per_day)

 return (upper - lower) * percentage + lower

 if selling_period_in_current_season < 50:

 my_demand_ranges = {4: np.nan, 3: 40, 2: 60, 1: 80, 0: 90}

 else:

 my_demand_ranges = {4: 35, 3: 50, 2: 75, 1: 90, 0: 100}

For 1.2

80
60

Linear Interpolation Raph
def next_price_estimator(demand_ranges, period, stock_left, days_left, lower_demand, upper_demand):

 expected_demand_to_sell_for = estimate_next_need_demand(period, stock_left)

 lower_demand = np.floor(expected_demand_to_sell_for)

 upper_demand = np.ceil(expected_demand_to_sell_for)

 upper = demand_ranges[lower_demand]

 lower = demand_ranges[upper_demand]

 stock_per_day = stock_left/days_left

 percentage = stock_per_day - np.floor(stock_per_day)

 return (upper - lower) * percentage + lower

80
60

Are we closer to upper or to
lower?

Capacity Curves Raph

Capacity Curves - differences Raph

Capacity Curves - price differences
Raph

Capacity Curves - price differences
Raph

Capacity Curves - price distributions -
good case Raph

Capacity Curves - price distributions -
good case Raph

Capacity Curves - price distributions -
bad case Raph

Capacity Curves - price distributions -
bad case Raph

High Demand vs Random Competitor
Raph

High Demand vs Random Competitor
Raph

Difference to Random in high Demand
Raph

Difference to Random in high Demand
Raph

Difference probably because of adjustments to competitor

Conclusion Raph
Next Improvement:

● The base prices in the dictionary need be be set
dynamically

● Better Competitor adjustments

Thank you for your attention

