AOL ANALYSIS WEATHER EVENTS

By: Nick Chandler, Luke Richard, Anirudh Sarda, Nancy Bou Kamel, Nataliia Remezova, Luisa Kalkert, Chiraag Mishra

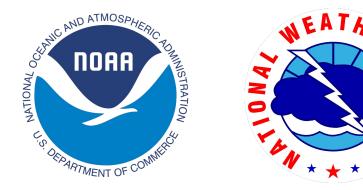
Presentation Outline

- 1. Analysis Goals
- 2. External Dataset
- 3. Overall Database Schema (Pre Slicing)
- 4. The 5 Questions

Analysis Goals

1. Understand the characteristics of weather events of March to May 2006

&


2. Analyze how weather events impacted people's browsing behavior

External Dataset

Data-Source

NOAA Storm Events Database

- By the National Oceanic and Atmospheric Association (NOAA), specifically the National Weather Service (NWS)
- Official Data: NOAA as part of the US Department of Commerce offers scientifically accurate weather data

Storm Events Database

Weather event: A specific weather occurrence, like storms, floods, or heatwaves, confined to a particular time and place

Dimensions:

- Time (Begin and End)
- Event Type (e.g. Tornado, Drought, Hailstorm)
- Location
- Deaths and Injuries
- Monetary damage (Crops and Property)

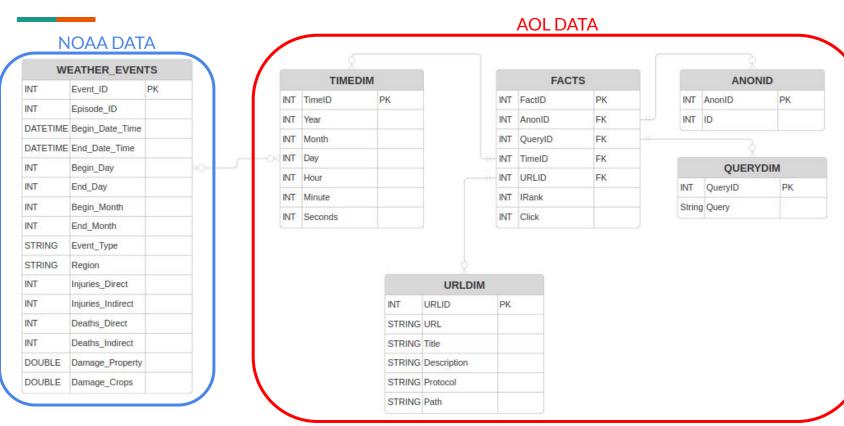
CREATE TABLE AOL SCHEMA.WEATHER EVENTS (BEGIN DATE TIME TIMESTAMP, END DATE TIME TIMESTAMP, EVENT TYPE VARCHAR(100), REGION VARCHAR(100), BEGIN DAY INTEGER, END DAY INTEGER, BEGIN MONTH INTEGER, END MONTH INTEGER, INJURIES DIRECT INTEGER, INJURIES INDIRECT INTEGER, DEATHS DIRECT INTEGER, DEATHS INDIRECT INTEGER. DAMAGE PROPERTY INTEGER, DAMAGE CROPS FLOAT, EPISODE ID INT, EVENT ID INT NOT NULL, PRIMARY KEY (EVENT ID)

Preprocessing

```
def convert abbreviated string(value):
    if isinstance(value, str):
        print(value)
        if 'k' in value.lower():
            return float(value.replace('k', '').replace('K', '')) * 1000
        elif 'm' in value.lower():
            return float(value.replace('m', '').replace('M', '')) * 1000000
        elif 'b' in value.lower():
            return float(value.replace('b', '').replace('B', '')) * 1000000000
        else:
            # If no abbreviation, just return the float version of the number
            try:
                return float(value)
            except ValueError:
                return None # or handle invalid strings as needed
    return value
```

```
Alter the format of the "counts of damages"
```

Remove duplicate rows

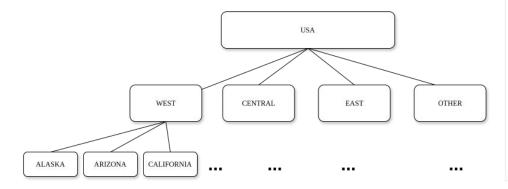

Replace NaN values with None
df = df.where(pd.notnull(df), None)
print(df.shape)

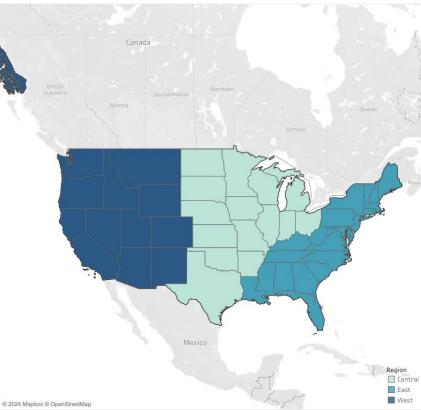
Remove duplicates based on all columns except 'EVENT_ID'
columns_except_event_id = df.columns[df.columns != 'EVENT_ID']

Drop duplicates based on all columns except 'EVENT_ID'
distinct_df = df.drop_duplicates(subset=columns_except_event_id)

Database Schema

Database-Schema

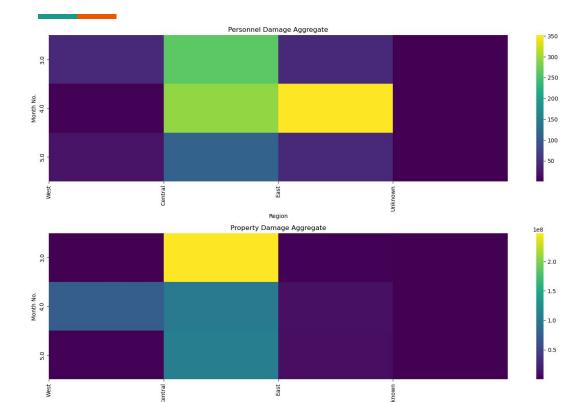



Our Questions

Question 1: When and where have weather events been most destructive?

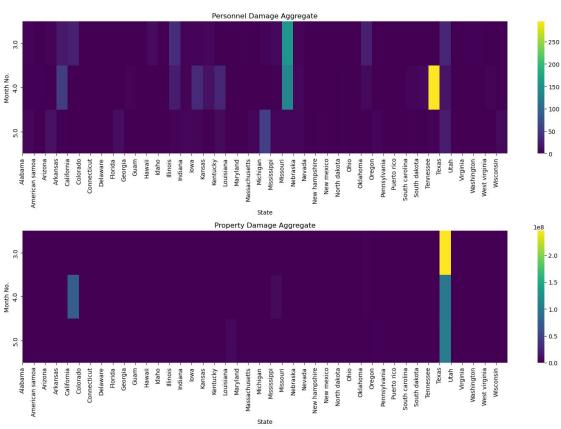
Spatial Hierarchy

 We group the US states into 4 Regions: West, Central, East and Other (e.g. Guam, Puerto Rico or American Samoa)



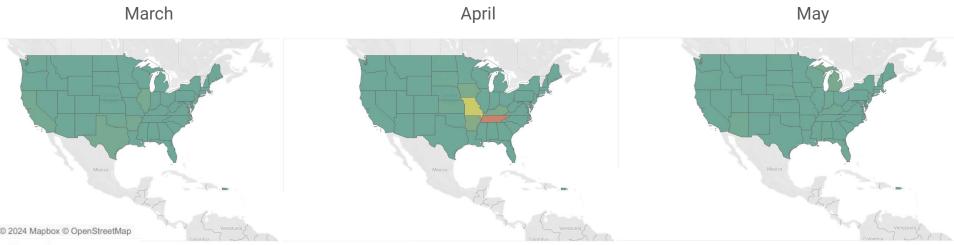
Query

```
WITH NewWeatherData AS (
    SELECT
        MONTH(BEGIN DATE TIME) AS BEGIN MON,
        REGION,
        CASE
            -- West Region
            WHEN STATE FIPS IN ('02', '04', '06', '08', '15', '16', '30', '32', '35', '41', '49', '53', '56')
           THEN 'West'
            -- Central Region
            WHEN STATE FIPS IN ('05', '17', '18', '19', '20', '26', '27', '29', '31', '38', '39', '46', '48', '55')
           THEN 'Central'
           -- East Region
           WHEN STATE FIPS IN ('01', '09', '10', '11', '12', '13', '21', '22', '23', '24', '25', '28', '33', '34', '36', '37', '40', '42', '44' '45', '47', '50',
'51', '54')
            THEN 'East'
           ELSE 'Unknown'
        END AS TRISECTION.
        COALESCE (INJURIES DIRECT, 0) + COALESCE (INJURIES INDIRECT, 0) + COALESCE(DEATHS DIRECT, 0) + COALESCE(DEATHS INDIRECT, 0) AS HUMAN DAMAGE,
        COALESCE (DAMAGE PROPERTY, 0) + COALESCE (DAMAGE CROPS, 0) AS NON HUMAN DAMAGE
    FROM
        AOL SCHEMA.WEATHER EVENTS
    WHERE
        MONTH(BEGIN DATE TIME) >= 3.0
SELECT
   BEGIN MON.
    REGION,
   TRISECTION,
    SUM(HUMAN DAMAGE) AS TOTAL HUMAN DAMAGE,
   SUM(NON HUMAN DAMAGE) AS TOTAL NON HUMAN DAMAGE
FROM
    NewWeatherData
GROUP BY
   CUBE (BEGIN MON, REGION, TRISECTION)
HAVING
   SUM(HUMAN DAMAGE) > 0
   AND SUM(NON HUMAN DAMAGE) > 0
ORDER BY
   BEGIN MON.
    TRISECTION.
    REGION;
```


Region Aggregates Heatmaps

Region

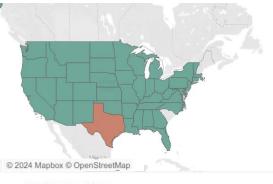
- Many injuries/deaths in the East in April.
- Most property damage was in the Central region in March.
- The Central region incurred the most property damage throughout the period.

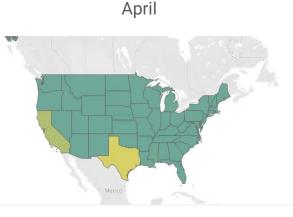

State-wise Aggregate Heatmaps

- Tennessee in April had the most injuries/deaths.
- Missouri had many injuries/deaths in March and April
- Texas had the most property damage across all months with March being the worst.
- California also had some property damage in April.

Deaths and Injuries by Natural Disasters over Time

□ Most dangerous month: **April** with **651 injuries and deaths**




0 295

Damage from natural disasters in USD over Time

□ Month with most damage to property: March with \$251 Mio.

March

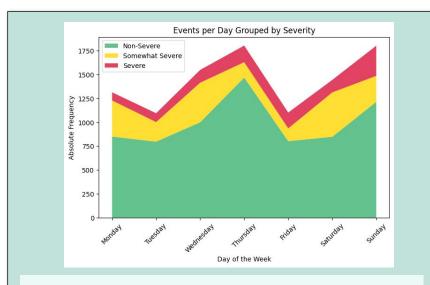
Total Destruction 0

Question 2: What are the types of events that we observe and how do they change over time?

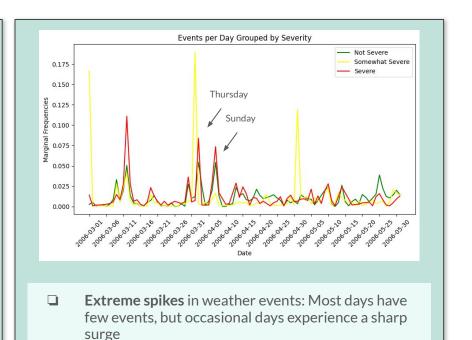
Query (Questions 2 & 3)

```
WITH SEVERITY TABLE AS(
   SELECT
   EVENT ID,
   EVENT TYPE,
   BEGIN DATE TIME,
   CASE
       WHEN WEATHER EVENTS.EVENT TYPE IN ('Blizzard', 'Tornado', 'Wildfire', 'Avalanche', 'Funnel Cloud', 'Waterspout',
'Debris Flow') THEN 'Severe'
       WHEN WEATHER EVENTS.EVENT TYPE IN ('Coastal Flood', 'Flash Flood', 'Flood', 'Drought', 'Dust Devil', 'Dust Storm',
'Storm Surge/Tide', 'Ice Storm', 'Winter Storm') THEN 'Somewhat Severe'
       WHEN WEATHER EVENTS.EVENT TYPE IN ('Cold/Wind Chill', 'Frost/Freeze', 'Heat', 'Heavy Rain', 'Heavy Snow', 'High
Wind', 'Strong Wind', 'Thunderstorm Wind', 'Winter Weather', 'Lightning', 'Marine High Wind', 'Marine Thunderstorm Wind',
'Sleet', 'WINTER WEATHER', 'High Surf', 'Marine Hail', 'Rip Current', 'Lake-Effect Snow', 'Dense Fog') THEN 'Not Severe'
       ELSE 'Unclassified'
   END AS SEVERITY
FROM AOL SCHEMA.WEATHER EVENTS
).
AGG EVENTS AS(
   SELECT
       SEVERITY,
       EVENT TYPE.
       COALESCE(COUNT(EVENT ID),0) AS FREQ
   FROM SEVERITY TABLE
   GROUP BY ROLLUP(SEVERITY, EVENT TYPE)
SELECT
   SEVERITY,
   EVENT TYPE.
    FREQ,
   RANK() OVER(PARTITION BY SEVERITY ORDER BY FREQ DESC) as RANKING
FROM AGG EVENTS
```

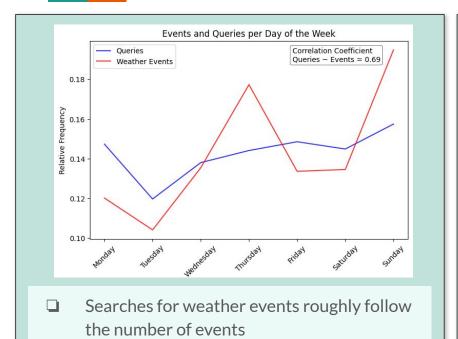
Weather Events by Severity

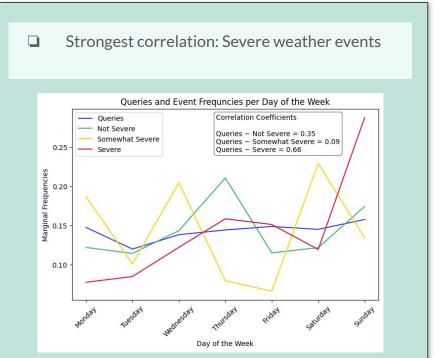


Query


(Questions 2 & 3)

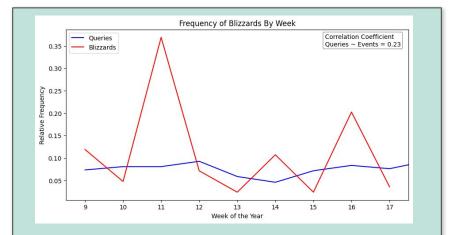
```
WITH DATE_RANGE AS (
    SELECT DATE '2006-03-01' AS EVENT DATE
    UNION ALL SELECT DATE '2006-03-02'
    UNION ALL SELECT DATE '2006-05-31'
),
SEVERITY_TABLE AS(
SELECT
    EVENT TYPE,
    EVENT ID,
    CAST(WEATHER EVENTS.BEGIN DATE TIME AS DATE) AS BEGIN DATE,
    WEEK(WEATHER EVENTS.BEGIN DATE TIME) AS BEGIN WEEK,
    (MOD(CAST(CAST(WEATHER_EVENTS.BEGIN_DATE_TIME AS DATE) - CAST('2006-01-01' AS DATE) AS INTEGER) + 6, 7) + 1) AS WEEKDAY,
    CASE
        WHEN WEATHER_EVENTS.EVENT_TYPE IN ('Blizzard', 'Tornado', 'Wildfire', 'Avalanche', 'Funnel Cloud', 'Waterspout') THEN 'Severe'
        WHEN WEATHER_EVENTS.EVENT_TYPE IN ('Coastal Flood', 'Flash Flood', 'Flood', 'Drought', 'Dust, Devil',
                                            'Dust Storm', 'Storm Surge/Tide') THEN 'Somewhat Severe'
        WHEN WEATHER_EVENTS. EVENT_TYPE IN ('Cold/Wind Chill', 'Frost/Freeze', 'Heat', 'Heavy Rain', 'Heavy Snow', 'Hail', 'High Wind', 'Strong Wind', 'Thunderstorm Wind',
                                             'Winter Weather', 'Lightning', 'Marine High Wind', 'Marine Thunderstorm Wind', 'Sleet', 'WINTER WEATHER', '
                                            Winter Storm') THEN 'Not Severe'
        ELSE 'Unclassified'
    END AS SEVERITY
FROM AOL SCHEMA.WEATHER EVENTS
SELECT
    DATE RANGE.EVENT DATE,
    SEVERITY_TABLE.BEGIN_WEEK,
    SEVERITY TABLE.WEEKDAY,
    SEVERITY TABLE.SEVERITY,
    SEVERITY_TABLE.EVENT_TYPE,
    COALESCE(COUNT(SEVERITY TABLE.EVENT ID), 0) AS FREQ
FROM DATE RANGE
LEFT JOIN SEVERITY TABLE
ON DATE RANGE.EVENT DATE = SEVERITY TABLE.BEGIN DATE
GROUP BY_ROLLUP((DATE_RANGE.EVENT_DATE, SEVERITY_TABLE.BEGIN_WEEK, SEVERITY_TABLE.WEEKDAY, SEVERITY_TABLE.SEVERITY),\
                (DATE_RANGE.EVENT_DATE, SEVERITY_TABLE.BEGIN_WEEK, SEVERITY_TABLE.WEEKDAY, SEVERITY_TABLE.EVENT_TYPE))
ORDER BY DATE RANGE.EVENT DATE ASC:
```


Severity of Weather Events

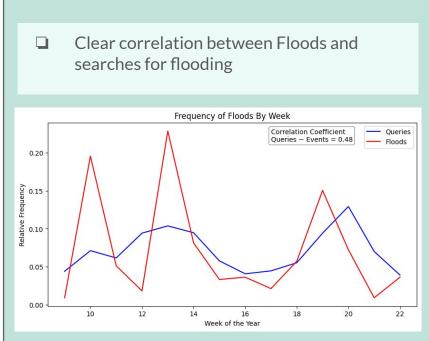


- □ The number of events **fluctuates heavily** over the week
- Cause: Might be due to **few extreme days**

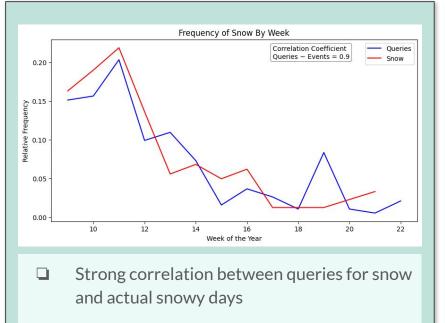
Searches and Severity

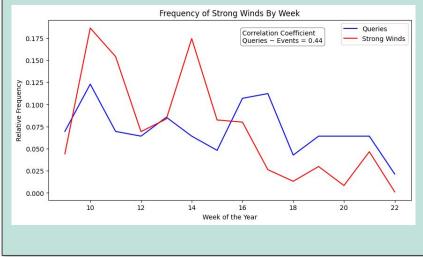


Question 3: How does the frequency of searches change during different weather events?



□ See query before


Blizzards and Floods


- Low correlation
- Dairy Queen had a Blizzard promotion
- Blizzard Entertainment games were very popular at the time (World of Warcraft)

Snowfall and Strong Wind

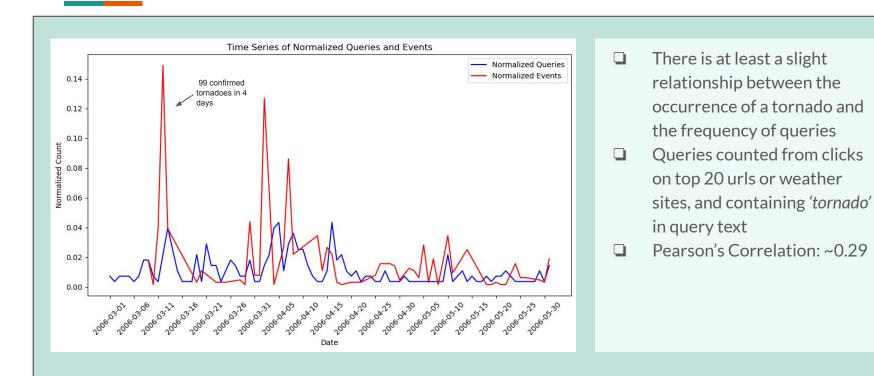
Only a weak to medium relationship between strong wind and searches for "strong wind"

Digging Deeper

- U We saw that tornadoes made up the majority of the severe events
- Does this correspond with weather related searches? If so, how?
- There was a series of devastating, newsworthy tornadoes during this period in the USA. (According to Wikipedia)

Queries

Query Frequency

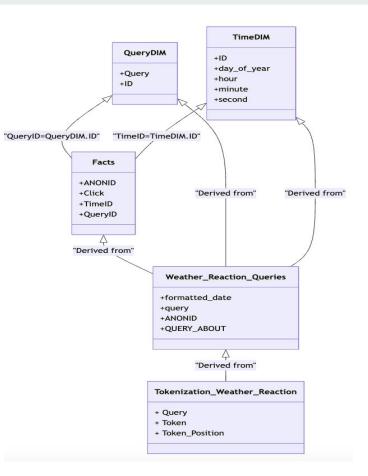

```
WITH TOPURLS AS (
                                                                                            AND (
   SELECT URLDIM.URL
   FROM AOL SCHEMA.FACTS
   JOIN AOL SCHEMA.URLDIM ON AOL SCHEMA.FACTS.URLID = AOL SCHEMA.URLDIM.ID
   WHERE AOL SCHEMA, FACTS, CLICK = 1
   GROUP BY URLDIM. URL
   ORDER BY COUNT(AOL SCHEMA.FACTS.CLICK) DESC
   LIMIT 20
).
FREQCOMP AS (
   SELECT
                                                                                   DateRange AS (
       FACTS.ANONID.
       QUERYDIM. QUERY,
        CAST(
            CONCAT(
                2006-',
                                                                                       . . .
                LPAD (CASE
                    WHEN TIMEDIM. "day of the year" BETWEEN 60 AND 90 THEN '03'
                                                                                   SELECT
                    WHEN TIMEDIM. "day of the year" BETWEEN 91 AND 120 THEN '04'
                    WHEN TIMEDIM. "day of the year" BETWEEN 121 AND 151 THEN '05'
                    ELSE '01'
                                                                                   FROM
                END, 2, '0'), '-',
                                                                                       DateRange
                LPAD(TIMEDIM. "day of the month", 2, '0'), ' ',
                                                                                    LEFT JOIN
                LPAD(TIMEDIM. "hour", 2, '0'), ':',
                                                                                       FREQCOMP E
                LPAD(TIMEDIM. "minute", 2, '0'), ':',
                                                                                   ON
                LPAD(TIMEDIM. "second", 2, '0')
            ) AS TIMESTAMP
       ) AS time as datetime
                                                                                   GROUP BY
   FROM
        AOL SCHEMA, FACTS
                                                                                   ORDER BY
       LEFT JOIN AOL SCHEMA.TIMEDIM ON FACTS.TIMEID = TIMEDIM.ID
                                                                                       query date;
       LEFT JOIN AOL SCHEMA.URLDIM ON FACTS.URLID = URLDIM.ID
       LEFT JOIN AOL SCHEMA. OUERYDIM ON FACTS. OUERYID = OUERYDIM. ID
```

WHERE FACTS.CLICK = 1 URLDIM.URL IN (SELECT URL FROM TODURLS) OR LOWER(URLDIM.URL) LIKE '%weather%' AND FACTS.ANONID IS NOT NULL AND TIMEDIM. "hour" IS NOT NULL AND TIMEDIM. "minute" IS NOT NULL AND TIMEDIM. "second" IS NOT NULL AND TIMEDIM. "day of the year" IS NOT NULL SELECT DATE '2006-03-01' AS EVENT DATE UNION ALL SELECT DATE '2006-03-02' UNION ALL SELECT DATE '2006-03-03' UNION ALL SELECT DATE '2006-05-31' DateRange.EVENT DATE AS query date, COALESCE(COUNT(*), 0) AS number of queries CAST(E.time as datetime AS DATE) = DateRange.EVENT DATE AND LOWER(E.QUERY) LIKE '%tornado%' DateRange.EVENT DATE

Tornado Frequency

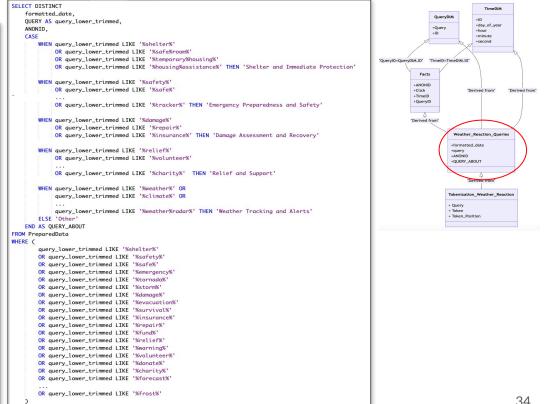
WITH DateRange AS (
SELECT DATE '2006-03-01' AS EVENT_DATE
UNION ALL SELECT DATE '2006-03-02'
UNION ALL SELECT DATE '2006-05-31'
SELECT
DateRange.EVENT DATE,
COALESCE(COUNT(E.EPISODE ID), 0) AS EVENT COUNT
FROM
DateRange
LEFT JOIN
AOL_SCHEMA.WEATHER_EVENTS E
ON
CAST(E.BEGIN_DATE_TIME AS DATE) = DateRange.EVENT_DATE
AND E.EVENT_TYPE = 'Tornado'
GROUP BY
DateRange.EVENT DATE
ORDER BY
DateRange.EVENT_DATE;

Searches for Tornados vs. actual Tornados


Conclusion

- Severity of weather events seems to be a driver of search engine activity
- Lagged correlation measures could help this analysis

Question 4: What are people most concerned about during and after tornadoes, as shown in keywords?


Schema and Info

- □ Weather Tracking and Alerts 39,091 queries
- Damage Assessment and Recovery 15,631 queries
- Emergency Preparedness and Safety 7,330 queries
- □ Relief and Support 7,299 queries
- □ Shelter and Immediate Protection 1,980 queries

Weather Queries Tables

CREATE OR REPLACE TABLE AOL_SCHEMA.Weather_Reaction_Oueries AS WITH MonthLookup AS (SELECT 'january' AS month_name, '01' AS month_number UNTON ALL SELECT 'february', '02' UNION ALL SELECT 'march', '03' UNION ALL SELECT 'april', '04' SELECT 'december', '12'), TrimmedQuery AS (SELECT TRIM(LOWER(OUERYDIM. "OUERY")) AS guery_lower FROM AOL SCHEMA. "OUERYDIM"). PreparedData AS (SELECT TIMEDIM, "month". TIMEDIM. "day of the month", TIMEDIM. "hour". TIMEDIM. "minute". QUERYDIM. "QUERY", FACTS. "ANONID", TO_TIMESTAMP(2006-111 COALESCE(MonthLookup.month_number, '00') || '-' 11 LPAD(CAST(TIMEDIM, "day of the month" AS VARCHAR(10)), 2, '0') || 1 1 11 LPAD(CAST(TIMEDIM. "hour" AS VARCHAR(2)), 2, '0') || ':' || LPAD(CAST(TIMEDIM. "minute" AS VARCHAR(2)), 2, '0')) AS formatted_date, TRIM(LOWER(QUERYDIM. "QUERY")) AS guery_lower_trimmed FROM AOL_SCHEMA. "TIMEDIM" INNER JOIN AOL SCHEMA. "OUERYDIM" ON OUERYDIM. "ID" = TIMEDIM. "ID" INNER JOIN AOL_SCHEMA. "FACTS" ON FACTS. "QUERYID" = QUERYDIM. "ID" LEFT JOIN MonthLookup ON LOWER(TRIM(TIMEDIM. "month")) = MonthLookup.month_name WHERE FACTS. "CLICK" = 1

Creating Tokenization Table

+Query CREATE OR REPLACE TABLE AOL SCHEMA.tokenization weather reaction AS WITH limited querydim AS (SELECT DISTINCT QUERY LOWER TRIMMED "QueryID=QueryDIM.ID" "TimeID=TimeDIM.ID" FROM AOL SCHEMA.Weather Reaction Queries WHERE OUERY LOWER TRIMMED IS NOT NULL Facts AND NOT (QUERY LOWER TRIMMED LIKE '%com' OR QUERY LOWER TRIMMED LIKE '%net' OR QUERY LOWER TRIMMED LIKE '%org' OR QUERY LOWER TRIMMED LIKE '%ret' OR +ANONID QUERY LOWER TRIMMED LIKE 'www%') +Click +TimeID +QueryID tokenized query AS (SELECT "Derived from" QUERY LOWER TRIMMED AS QUERY, -- Fix: Use QUERY LOWER TRIMMED consistently Weather_Reaction_Queries REGEXP SUBSTR(+formatted_date REGEXP REPLACE(QUERY LOWER TRIMMED, '[^[:alnum:]]', ''), -- Clean the query +query +ANONID '[^0-9[:space:]]+', -- Extract tokens +QUERY_ABOUT 1. LEVEL) AS TOKEN, Tokenization Weather React LEVEL AS TOKEN POSITION + Query FROM limited quervdim + Token + Token_Position CONNECT BY PRIOR QUERY LOWER TRIMMED = QUERY LOWER TRIMMED AND LEVEL <= LENGTH(REGEXP REPLACE(QUERY LOWER TRIMMED, '[^]+', '')) + 1 -- Number of words AND OUERY LOWER TRIMMED IS NOT NULL AND REGEXP SUBSTR(REGEXP REPLACE(QUERY LOWER TRIMMED, '[^[:alnum:]]', ''), -- Clean guery string '[^0-9[:space:1]+', -- Extract tokens 1. LEVEL) IS NOT NULL SELECT OUERY. TOKEN. TOKEN POSITION FROM tokenized query WHERE TOKEN IS NOT NULL -- Exclude NULL tokens AND TOKEN NOT IN ('the', 'and', 'are', 'is', 'in', 'to', 'for', 'on', 'of', 'or', 'no', 'what', 'with', 'http', 'com', 'how', 'www', 'you', 'our', 'from', 'las', 'all', 'new', 'who', 'where', 'when', 'why', 'whom', 'whose', 'which') -- Exclude common stopwords AND LENGTH(TOKEN) > 2 -- Exclude tokens shorter than 3 characters ORDER BY QUERY, TOKEN POSITION;

TimeDIM

+ID +day of year

+hour

+minute +second

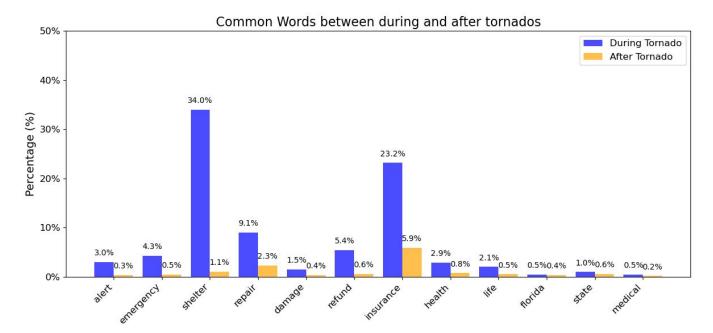
"Derived from"

"Derived from"

QueryDIM

During and After Tornado Queries

During Tornado

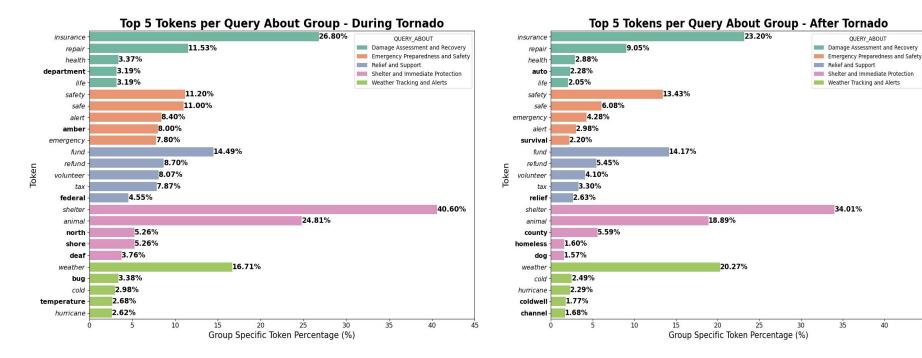

WITH Events_DATA AS (TOKEN_COUNT AS (
SELECT	SELECT	
we.EVENT_TYPE,	TOKEN,	
	COALESCE(QUERY_ABOUT, 'UNKNOWN') AS QUERY_ABOUT,	
we.BEGIN_DATE_TIME,	SUM(query_count) AS token_count	
we.END_DATE_TIME	FROM Tokens_Queries	
FROM AOL_SCHEMA.WEATHER_EVENTS we	GROUP BY TOKEN, QUERY_ABOUT	
WHERE we.BEGIN_DATE_TIME >= '2006-03-01 00:01:00.000000'	HAVING SUM(query_count)>2	
AND LOWER(we.EVENT_TYPE) LIKE 'tornado'	ORDER BY token_count DESC	
),	2,	
Relevant_Queries AS (TOTAL_QUERY_COUNT AS (
SELECT	SELECT	
QUERIES_WEATHER.QUERY_LOWER_TRIMMED AS QUERY,	QUERY_ABOUT,	
QUERIES_WEATHER.FORMATTED_DATE,	SUM(token_count) AS total_query_count	
QUERIES_WEATHER.QUERY_ABOUT,	FROM TOKEN_COUNT	
we.EVENT_TYPE	GROUP BY QUERY_ABOUT	
FROM Events_DATA we),	
INNER JOIN AOL_SCHEMA.Weather_Reaction_Queries AS QUERIES_WEATHER	NORMALIZED_TOKEN_COUNT AS (
ON QUERIES_WEATHER.FORMATTED_DATE BETWEEN we.BEGIN_DATE_TIME AND we.END_DATE_TIME	SELECT	
),	tc.TOKEN,	
Grouped_Results AS (tc.QUERY_ABOUT,	
SELECT	tc.token_count,	
QUERY,	tqc.total_query_count,	
QUERY_ABOUT,	CASE	
EVENT_TYPE,	WHEN tc.QUERY_ABOUT = 'UNKNOWN' THEN	
COUNT(*) AS query_count	(tc.token_count * 1.0 /	
FROM Relevant_Queries	(SELECT SUM(token_count) FROM TOKEN_COUNT WHERE QUERY_ABOUT = 'UNKNOWN'))	
GROUP BY GROUPING SETS (ELSE	
(QUERY, QUERY_ABOUT, EVENT_TYPE),	<pre>(tc.token_count * 1.0 / tqc.total_query_count)</pre>	
(QUERY, EVENT_TYPE)	END AS Group_Specific_Token_Probability	
	FROM TOKEN_COUNT tc	
、 <i></i>	JOIN TOTAL_QUERY_COUNT tqc	
J, Tokens_Queries AS (ON tc.QUERY_ABOUT = tqc.QUERY_ABOUT	
SELECT	SELECT	
token.TOKEN,	TOKEN,	
ex.QUERY,	QUERY_ABOUT,	
ex.QUERY_ABOUT,	token_count,	
ex.EVENT_TYPE,	total_query_count,	
ex.query_count	Group_Specific_Token_Probability,	
FROM Grouped_Results ex	Group_Specific_Token_Probability*100 AS Group_specific_Token_Percentage	
INNER JOIN AOL_SCHEMA.tokenization_weather_reaction token	FROM NORMALIZED_TOKEN_COUNT	
ON ex.QUERY = token.QUERY	ORDER BY QUERY_ABOUT, Group_Specific_Token_Probability DESC;	

After Tornado

WIT	H Ordered_Events AS (
	SELECT
	EVENT_TYPE,
	REGION.
	BEGIN_DATE_TIME,
	END_DATE_TIME,
	LEAD(BEGIN_DATE_TIME) OVER (ORDER BY BEGIN_DATE_TIME) AS NEXT_END_DATE_TIME
	FROM AOL SCHEMA.WEATHER EVENTS
	WHERE EVENT_TYPE = 'Tornado'
	ORDER BY BEGIN_DATE_TIME
),	UNDER DI BEGIN_DATE_TIME
	culated_Events AS (
cui	SELECT
	EVENT_TYPE.
	BEGIN_DATE_TIME,
	END_DATE_TIME,
	ADD_MINUTES(TO_TIMESTAMP(SUBSTR(END_DATE_TIME, 1, 19)), 1) AS WINDOW_START,
	ADD_MINUTES(TO_TIMESTAMP(SUBSTR(NEXT_END_DATE_TIME, 1, 19)), -1) AS WINDOW_END
	FROM Ordered_Events
),	2 (2) / N (2)
Win	dow_Events AS (
	SELECT
	EVENT_TYPE,
	BEGIN_DATE_TIME,
	END_DATE_TIME,
	WINDOW_START,
	WINDOW_END
	FROM Calculated_Events
	WHERE SECONDS_BETWEEN(WINDOW_END, WINDOW_START) >= 0
),	
Rel	evant_Queries AS (
	SELECT
	qt.QUERY_LOWER_TRIMMED AS QUERY,
	qt.QUERY_ABOUT,
	qt.FORMATTED_DATE,
	tq.EVENT_TYPE,
	tg.BEGIN_DATE_TIME,
	tq.END_DATE_TIME,
	tg.WINDOW_START,
	tq.WINDOW_END
	FROM Window_Events tg
	INNER JOIN AOL_SCHEMA.Weather_Reaction_Oueries at
	ON at.FORMATTED_DATE BETWEEN ta.WINDOW_START AND ta.WINDOW_END
),	on derrorenten formen editationiformen une editationifenn
1,	

),

Commonly Searched Keywords during and after Tornadoes


During Tornado, the focus is on immediate response, emergency services, and damage repair, with terms like shelter, repair, insurance, and alert.

Distinct Keywords during and after Tornadoes

- **During Tornado**: Focuses on immediate responses with terms like "sigalert" and "wkyc" highlighting alerts and local events.
- After Tornado: Focuses on recovery with terms like "accuweather" for weather monitoring

Relevant Keywords before and after Tornadoes

Conclusion

- Terms like insurance, safety, shelter are searched for more during tornadoes which might indicate an enhanced focus on security
- Users search for alert related sites more during tornadoes than after tornadoes

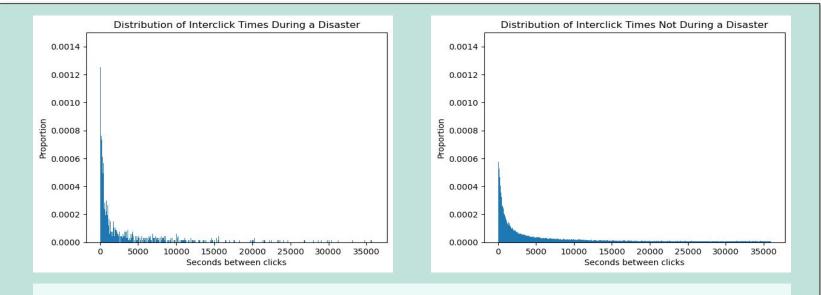
Question 5: Do users behave more anxiously (click faster) during disasters*?

*Specifically during tornadoes

Interclick Times

Theory: People will click on the next link faster during Tornadoes

Approach: Create a new measure as the time between clicking on links for each user


Creating a Table & Base Query

```
CREATE TABLE AOL SCHEMA. INTERARRIVAL TIMES AS
   SELECT
       FACTS.ANONID,
       CAST(
       CONCAT(
            2006-
           LPAD (CASE
               WHEN TIMEDIM. [day of the year] BETWEEN 60 AND 90 THEN '03'
               WHEN TIMEDIM, [day of the year] BETWEEN 91 AND 120 THEN '04'
               WHEN TIMEDIM. [day of the year] BETWEEN 121 AND 151 THEN '05'
               ELSE '01'
           END, 2, '0'), '-'
           LPAD(TIMEDIM.[day of the month], 2, '0'), '',
           LPAD(TIMEDIM. [hour], 2, '0'), ':'.
           LPAD(TIMEDIM.[minute], 2, '0'), ':',
           LPAD(TIMEDIM.[second], 2, '0')
       ) AS TIMESTAMP) AS time as datetime
   FROM
       AOL SCHEMA.FACTS LEFT JOIN AOL SCHEMA.TIMEDIM ON FACTS.TIMEID = TIMEDIM.ID
       LEFT JOIN AOL SCHEMA.URLDIM ON FACTS.URLID = URLDIM.ID
   WHERE FACTS.CLICK = 1
       AND URLDIM.URL IN (
           SELECT URLDIM. URL
           FROM AOL SCHEMA.FACTS
           JOIN AOL SCHEMA.URLDIM ON AOL SCHEMA.FACTS.URLID = AOL SCHEMA.URLDIM. ID
           WHERE AOL SCHEMA.FACTS.CLICK = 1
           GROUP BY URLDIM. URL
           ORDER BY COUNT(AOL SCHEMA, FACTS, CLICK) DESC
           LIMIT 20
   AND FACTS, ANONID IS NOT NULL
   AND TIMEDIM, [hour] IS NOT NULL
   AND TIMEDIM. [minute] IS NOT NULL
   AND TIMEDIM. [second] IS NOT NULL
   AND TIMEDIM. [day of the year] IS NOT NULL
```

```
SELECT
   T1.ANONID,
   T1.TIME AS DATETIME,
   COALESCE(LAG(TIME AS DATETIME) OVER (PARTITION BY ANONID ORDER BY TIME AS DATETIME), TIME AS DATETIME) AS LaggedDateTime,
   SECONDS BETWEEN(T1.TIME AS DATETIME, COALESCE(LAG(TIME AS DATETIME) OVER (PARTITION BY ANONID ORDER BY TIME AS DATETIME), TIME AS DATETIME)) as
Seconds Difference.
   MINUTES BETWEEN(T1.TIME AS DATETIME, COALESCE(LAG(TIME AS DATETIME) OVER (PARTITION BY ANONID ORDER BY TIME AS DATETIME), TIME AS DATETIME)) as
Minutes Difference
FROM
   AOL SCHEMA, INTERARRIVAL TIMES as T1
WHERE
   T1.ANONID IN (
       SELECT T2. ANONID
       FROM AOL SCHEMA. INTERARRIVAL TIMES as T2
       GROUP BY T2. ANONID
       HAVING COUNT(T2.ANONID) >- 10
   AND EXISTS(
       SELECT 1
       FROM AOL SCHEMA.WEATHER EVENTS as T3
       WHERE
       (T1.TIME AS DATETIME BETWEEN T3.BEGIN DATE TIME AND T3.END DATE TIME)
       AND (T3.EVENT TYPE = 'Tornado')
   )
ORDER BY
   T1. ANONID.
   T1.TIME AS DATETIME
```

The query to obtain the interclick times not occurring during a tornado is only modified in the exists statement where clause.

Times between Clicks

- Higher spike for short interclick times during tornadoes
- $\Box \qquad \text{Visual comparison is insufficient} \Rightarrow \text{Statistical test}$

Statistical Test

We use a T-Test assuming unequal variances with a significance level of 0.05

H₀: There is **no difference in mean interclick time** between those occurring during and those not occurring during a natural disaster.

H₁: There <u>is a difference in mean interclick time</u> between those occurring during and those not occurring during a natural disaster.

T-Test Results: Test Statistic: -44.5 P-Value: 0.0000*

*Below Numerical Precision

Conclusion

- $\Box \quad P-value < 0.05 \Rightarrow reject H_0$
- The data suggests there is a **statistically significant difference** in mean time between clicks when there is a tornado compared to when there is none

Additional Insight:

- The number of clicks in a period of time could be modeled as a Poisson process
- This would allow you to construct data-driven query engine traffic simulations

Summary of Findings

- 1. Damages were concentrated in single states
- 2. The majority of weather events: Not severe and cold or wind related
- 3. Search trends for weather events followed actual events, especially severe ones
- 4. Searches for keywords such as 'Shelter' or 'Insurance' see a significant increase during tornadoes.
- 5. Users clicked on links faster on average during tornadoes

Thank you for your attention!

Question (Bonus): Which domains were most clicked during weather events that occurred in different regions?

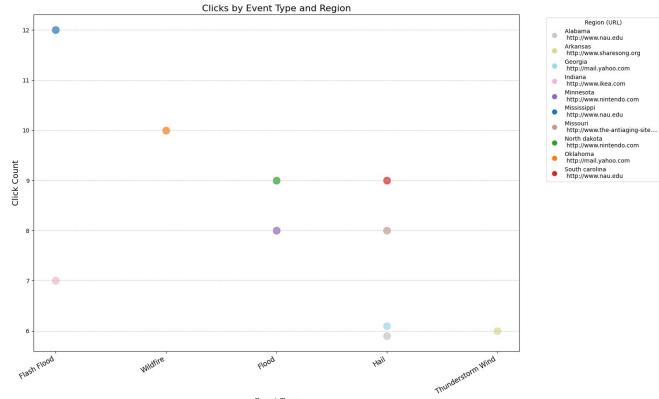
Query

Most clicked domains or URLs and matched by time to specific weather events and regions where they occurred

WITH ClickedDomains AS (
SELECT	RankedDomains AS (
	SELECT
AOL_SCHEMA.WEATHER_EVENTS.REGION AS REGION,	REGION,
AOL_SCHEMA.WEATHER_EVENTS.EVENT_TYPE AS EVENT_TYPE,	EVENT_TYPE,
AOL_SCHEMA.WEATHER_EVENTS.BEGIN_DATE_TIME AS BEGIN_DATE_TIME,	BEGIN_DATE_TIME,
AOL_SCHEMA.URLDIM.THISDOMAIN AS THISDOMAIN,	THISDOMAIN,
AOL_SCHEMA.URLDIM.URL AS URL,	URL,
COUNT(AOL_SCHEMA.FACTS.URLID) AS CLICK_COUNT	CLICK_COUNT,
FROM	ROW NUMBER() OVER (PARTITION BY REGION, EVENT TYPE
AOL SCHEMA.WEATHER EVENTS	ORDER BY CLICK COUNT DESC
NIOC) AS RANK
AOL SCHEMA.FACTS	FROM
ON AOL SCHEMA.WEATHER EVENTS.BEGIN DAY = AOL SCHEMA.FACTS.TIMEID	ClickedDomains
JOIN	WHERE
AOL SCHEMA.URLDIM	THISDOMAIN IS NOT NULL OR URL IS NOT NULL
ON AOL SCHEMA.FACTS.URLID = AOL SCHEMA.URLDIM.ID)
WHERE	SELECT
AOL SCHEMA.FACTS.CLICK = TRUE	REGION,
AND (AOL SCHEMA.URLDIM.THISDOMAIN IS NOT NULL OR AOL SCHEMA.URLDIM.URL IS NOT NULL)	EVENT_TYPE,
AND AOL SCHEMA.WEATHER EVENTS.BEGIN DATE TIME BETWEEN '2006-03-01 00:00:00' AND '2006-05-31 23:59:59'	BEGIN_DATE_TIME,
GROUP BY ROLLUP(THISDOMAIN,
AOL SCHEMA, WEATHER EVENTS. REGION,	URL,
	CLICK_COUNT
AOL_SCHEMA.WEATHER_EVENTS.EVENT_TYPE,	FROM
AOL_SCHEMA.WEATHER_EVENTS.BEGIN_DATE_TIME,	RankedDomains
AOL_SCHEMA.URLDIM.THISDOMAIN,	WHERE
AOL_SCHEMA.URLDIM.URL	RANK = 1
,	ORDER BY
	REGION,
	EVENT_TYPE, BEGIN DATE TIME:
	DEGIN_DATE_TIME;

Result

	REGION	EVENT_TYPE	BEGIN_DATE_TIME	THISDOMAIN	URL	CLICK_COUNT
0	Alabama	Flash Flood	2006-03-20 18:45:00.000000	nau	http://www.nau.edu	3
1	Alabama	Funnel Cloud	2006-03-20 17:55:00.000000	nau	http://www.nau.edu	3
2	Alabama	Hail	2006-04-20 17:08:00.000000	nau	http://www.nau.edu	6
3	Alabama	Lightning	2006-04-18 18:10:00.000000	citysearch	http://pittsburgh.citysearch.com	1
4	Alabama	Strong Wind	2006-03-09 14:15:00.000000	са	http://gocalif.ca.gov	1
487	Wyoming	Heavy Snow	2006-05-09 04:00:00.000000	са	http://gocalif.ca.gov	2
488	Wyoming	Lightning	2006-05-08 14:10:00.000000	ebay.co	http://www.ebay.co.uk	1
489	Wyoming	Thunderstorm Wind	2006-05-26 16:39:00.000000	yahoo	http://mail.yahoo.com	1
490	Wyoming	Wildfire	2006-04-10 09:00:00.000000	bilkent.edu	http://web.bilkent.edu.tr	1
491	Wyoming	Winter Storm	2006-04-24 01:00:00.000000	sharesong	http://www.sharesong.org	4


492 rows × 6 columns

Query

Top 10 most clicked URLs during severe weather events

/ITH ClickedDomains AS (RankedDomains AS (
SELECT	SELECT
AOL_SCHEMA.WEATHER_EVENTS.REGION AS REGION,	REGION,
AOL_SCHEMA.WEATHER_EVENTS.EVENT_TYPE AS EVENT_TYPE,	EVENT_TYPE,
AOL SCHEMA.WEATHER EVENTS.BEGIN DATE TIME AS BEGIN DATE TIME,	BEGIN_DATE_TIME,
AOL_SCHEMA.URLDIM.THISDOMAIN AS THISDOMAIN,	THISDOMAIN,
AOL SCHEMA.URLDIM.URL AS URL,	URL,
COUNT (AOL_SCHEMA.FACTS.URLID) AS CLICK COUNT	CLICK_COUNT,
FROM	ROW NUMBER() OVER (
AOL_SCHEMA.WEATHER_EVENTS	PARTITION BY REGION
NIOC	ORDER BY CLICK_COUNT DESC, BEGIN_DATE_TIME ASC
AOL_SCHEMA.FACTS) AS RANK
ON AOL SCHEMA.WEATHER EVENTS.BEGIN DAY = AOL SCHEMA.FACTS.TIMEID	FROM
NIOC	ClickedDomains
AOL_SCHEMA.URLDIM)
ON AOL_SCHEMA.FACTS.URLID = AOL_SCHEMA.URLDIM.ID	SELECT
WHERE	REGION,
AOL_SCHEMA.FACTS.CLICK = TRUE	EVENT_TYPE,
AND (AOL_SCHEMA.URLDIM.THISDOMAIN IS NOT NULL OR AOL_SCHEMA.URLDIM.URL IS NOT NULL)	BEGIN_DATE_TIME,
AND ADL SCHEMA.WEATHER EVENTS.BEGIN DATE TIME BETWEEN '2006-03-01 00:00:00' AND '2006-05-31 23:59:59	' THISDOMAIN,
GROUP BY	URL,
AOL_SCHEMA.WEATHER_EVENTS.REGION,	CLICK_COUNT
AOL_SCHEMA.WEATHER_EVENTS.EVENT_TYPE,	FROM
AOL_SCHEMA.WEATHER_EVENTS.BEGIN_DATE_TIME,	RankedDomains
AOL_SCHEMA.URLDIM.THISDOMAIN,	WHERE
AOL_SCHEMA.URLDIM.URL	RANK = 1
2/	ORDER BY CLICK_COUNT DESC
	LIMIT 10;

Visualization

Conclusion

During severe weather events, people are staying at home and use mostly entertainment or education websites

Specific weather events (like Wildfire or Flash Flood) are correlated with spikes in clicks

Diving into the queries: A Closer Look

This section provides an in-depth analysis of how SQL queries were crafted to answer key questions using ROLAP techniques.

"Ever wondered how SQL queries bring multidimensional data to life?"

Query 1

Key operations utilized: Cube

Working of the query: Uses the CUBE operation to aggregate property and personnel damage by states, regions, and the starting months of natural disasters.

Output:

	BEGIN_MON	REGION	TRISECTION	TOTAL_HUMAN_DAMAGE	TOTAL_NON_HUMAN_DAMAGE
0	3.0	Arkansas	Central	19	175000
1	3.0	Illinois	Central	39	300000
2	3.0	Indiana	Central	3	163000
3	3.0	lowa	Central	3	220000
4	3.0	Kansas	Central	5	296000
:					
257	NaN	Virginia	NaN	3	215000
258	NaN	Washington	NaN	3	49000
259	NaN	West virginia	NaN	3	104000
260	NaN	Wisconsin	NaN	7	403000
261	NaN	NaN	NaN	1173	549989300

Questions $(^{2}/_{3})_{a}$

Key Operators:

- ROLLUP
- RANK
- PARTITION BY

```
WITH SEVERITY TABLE AS(
    SELECT
    EVENT ID,
    EVENT TYPE,
    BEGIN DATE TIME,
    CASE
        WHEN WEATHER EVENTS.EVENT TYPE IN ('Blizzard', 'Tornado', 'Wildfire', 'Avalanche', 'Funnel Cloud', 'Waterspout',
 'Debris Flow') THEN 'Severe'
        WHEN WEATHER EVENTS.EVENT TYPE IN ('Coastal Flood', 'Flash Flood', 'Flood', 'Drought', 'Dust Devil', 'Dust Storm',
'Storm Surge/Tide', 'Ice Storm', 'Winter Storm') THEN 'Somewhat Severe'
        WHEN WEATHER EVENTS.EVENT TYPE IN ('Cold/Wind Chill', 'Frost/Freeze', 'Heat', 'Heavy Rain', 'Heavy Snow', 'High
Wind', 'Strong Wind', 'Thunderstorm Wind', 'Winter Weather', 'Lightning', 'Marine High Wind', 'Marine Thunderstorm Wind',
'Sleet', 'WINTER WEATHER', 'High Surf', 'Marine Hail', 'Rip Current', 'Lake-Effect Snow', 'Dense Fog') THEN 'Not Severe'
        ELSE 'Unclassified'
    END AS SEVERITY
FROM AOL SCHEMA.WEATHER EVENTS
),
AGG EVENTS AS(
    SELECT
        SEVERITY,
        EVENT TYPE,
        COALESCE(COUNT(EVENT ID),0) AS FREQ
    FROM SEVERITY TABLE
    GROUP BY ROLLUP(SEVERITY, EVENT TYPE)
SELECT
    SEVERITY,
    EVENT TYPE,
    FREO.
    RANK() OVER(PARTITION BY SEVERITY ORDER BY FREQ DESC) as RANKING
FROM AGG EVENTS
```

Output

The total amount for each EVENT_TYPE is aggregated. Then hierarchically grouped by SEVERITY. The EVENT_TYPEs in each SEVERITY grouping are then ranked from the most to least frequent events.

2	SEVERITY	EVENT_TYPE	FREQ	RANKING
0	Not Severe	NaN	20832	1
1	Not Severe	Hail	9843	2
2	Not Severe	Thunderstorm Wind	4844	3
3	Not Severe	High Wind	1498	4
4	Not Severe	Heavy Snow	999	5
5	Not Severe	Strong Wind	738	6
6	Not Severe	Winter Weather	647	7
7	Not Severe	WINTER WEATHER	421	8
8	Not Severe	Marine Thunderstorm Wind	344	9
9	Not Severe	Cold/Wind Chill	339	10
10	Not Severe	Dense Fog	265	11
11	Not Severe	Heavy Rain	258	12
12	Not Severe	Lightning	235	13
13	Not Severe	High Surf	157	14
14	Not Severe	Frost/Freeze	125	15
15	Not Severe	Heat	66	16
16	Not Severe	Lake-Effect Snow	21	17
17	Not Severe	Marine Hail	20	18
18	Not Severe	Marine High Wind	6	19
19	Not Severe	Rip Current	5	20
20	Not Severe	Sleet	1	21

21	Severe	NaN	1326	1
22	Severe	Tornado	705	2
23	Severe	Wildfire	191	3
24	Severe	Funnel Cloud	166	4
25	Severe	Blizzard	139	5
26	Severe	Waterspout	52	6
27	Severe	Avalanche	41	7
28	Severe	Debris Flow	32	8
29	Somewhat Severe	NaN	3576	1
30	Somewhat Severe	Drought	1213	2
31	Somewhat Severe	Winter Storm	1097	3
32	Somewhat Severe	Flash Flood	599	4
33	Somewhat Severe	Flood	516	5
34	Somewhat Severe	Coastal Flood	67	6
35	Somewhat Severe	Ice Storm	48	7
36	Somewhat Severe	Dust Storm	19	8
37	Somewhat Severe	Storm Surge/Tide	15	9
38	Somewhat Severe	Dust Devil	2	10
39	NaN	NaN	25734	1

Key Operators:

ROLLUP

```
WITH DATE RANGE AS (
   SELECT DATE '2006-03-01' AS EVENT DATE
   UNION ALL SELECT DATE '2006-03-02'
   UNION ALL SELECT DATE '2006-05-31'
),
SEVERITY_TABLE AS(
SELECT
   EVENT_TYPE,
   EVENT_ID,
   CAST(WEATHER_EVENTS.BEGIN_DATE_TIME AS DATE) AS BEGIN_DATE,
   WEEK(WEATHER_EVENTS.BEGIN_DATE_TIME) AS BEGIN_WEEK,
    (MOD(CAST(CAST(WEATHER_EVENTS.BEGIN_DATE_TIME AS DATE) - CAST('2006-01-01' AS DATE) AS INTEGER) + 6, 7) + 1) AS WEEKDAY,
   CASE
        WHEN WEATHER_EVENTS.EVENT_TYPE IN ('Blizzard', 'Tornado', 'Wildfire', 'Avalanche', 'Funnel Cloud', 'Waterspout') THEN 'Severe'
        WHEN WEATHER_EVENTS.EVENT_TYPE IN ('Coastal Flood', 'Flash Flood', 'Flood', 'Drought', 'Dust, Devil',
                                            'Dust Storm', 'Storm Surge/Tide') THEN 'Somewhat Severe'
        WHEN WEATHER EVENTS. EVENT TYPE IN ('Cold/Wind Chill', 'Frost/Freeze', 'Heat', 'Heavy Rain', 'Heavy Snow', 'Hail', 'High Wind', 'Strong Wind', 'Thunderstorm Wind',
                                            'Winter Weather', 'Lightning', 'Marine High Wind', 'Marine Thunderstorm Wind', 'Sleet', 'WINTER WEATHER', '
                                            Winter Storm') THEN 'Not Severe'
       ELSE 'Unclassified'
   END AS SEVERITY
FROM AOL_SCHEMA.WEATHER_EVENTS
)
SELECT
   DATE RANGE.EVENT DATE,
   SEVERITY TABLE.BEGIN WEEK,
   SEVERITY_TABLE.WEEKDAY,
   SEVERITY TABLE.SEVERITY.
   SEVERITY_TABLE.EVENT_TYPE,
   COALESCE(COUNT(SEVERITY_TABLE.EVENT_ID), 0) AS FREQ
FROM DATE_RANGE
LEFT JOIN SEVERITY TABLE
ON DATE_RANGE.EVENT_DATE = SEVERITY_TABLE.BEGIN_DATE
GROUP BY ROLLUP((DATE_RANGE.EVENT_DATE, SEVERITY_TABLE.BEGIN_WEEK, SEVERITY_TABLE.WEEKDAY, SEVERITY_TABLE.SEVERITY),\
               (DATE_RANGE.EVENT_DATE, SEVERITY_TABLE.BEGIN_WEEK, SEVERITY_TABLE.WEEKDAY, SEVERITY_TABLE.EVENT_TYPE))
ORDER BY DATE RANGE.EVENT DATE ASC;
```

Output

Again, the total occurrences of each EVENT_TYPE is aggregated then hierarchically grouped by severity. Additionally, each data point has the date, week, and day of the week that the event occurred on. This allowed us to analyze all EVENT_TYPEs and SEVERITY groups by any relevant time dimension.

	EVENT_DATE	BEGIN_WEEK	WEEKDAY	SEVERITY	EVENT_TYPE	FREQ
0	2006-03-01	9.0	3.0	Not Severe	Heavy Snow	20
1	2006-03-01	9.0	3.0	Not Severe	Winter Weather	5
2	2006-03-01	9.0	3.0	Not Severe	High Wind	16
3	2006-03-01	9.0	3.0	Not Severe	Strong Wind	1
4	2006-03-01	9.0	3.0	Not Severe	Cold/Wind Chill	3
1262	2006-05-31	22.0	3.0	Not Severe	NaN	149
1263	2006-05-31	22.0	3.0	Somewhat Severe	NaN	22
1264	2006-05-31	22.0	3.0	Severe	NaN	14
1265	2006-05-31	22.0	3.0	Unclassified	NaN	95
1266	NaN	NaN	NaN	NaN	NaN	19545

Questions (²/₃)_b

This SQL query was used to help generate the graphs on slides **23**, **26**, and **27**. Here, we are joining only rows where the AOL query contains the keyword 'weather'. For other graphs, the keyword was changed to 'blizzard', 'snow', 'wind', and 'flood'. In the query for blizzards, we had to drop the condition that the URL also be weather related. Otherwise the dataset was too small to use. However, this also introduced many non-relevant AOL queries to the data, resulting in low-quality data.

DATE RANGE AS (SELECT DATE '2006-03-01' AS EVENT_DATE UNION ALL SELECT DATE '2006-03-02' UNION ALL SELECT DATE '2006-05-31' QUERY FREQ AS (QUERYDIM.QUERY, TIMEDIM. [calender week], TIMEDIM. [day of the week]. CAST (TO TIMESTAMP(WHEN CAST(TIMEDIM.[month] AS CHAR(5)) = 'march' THEN '03' WHEN CAST(TIMEDIM.[month] AS CHAR(5)) = 'april' THEN '04' WHEN CAST(TIMEDIM.[month] AS CHAR(5)) = 'may' THEN '05' ELSE 'NULL' , '-', LPAD(TIMEDIM.[day of the month], 2, '0')), 'YYYY-MM-DD') AS DATE) AS YMD TIMESTAMP FROM AOL SCHEMA.FACTS LEFT JOIN AOL SCHEMA.TIMEDIM ON FACTS.TIMEID = TIMEDIM.ID LEFT JOIN AOL SCHEMA.OUERYDIM ON FACTS.OUERYID = OUERYDIM.ID LEFT JOIN AOL SCHEMA.URLDIM ON FACTS.URLID = URLDIM.ID WHERE LOWER(QUERYDIM.QUERY) LIKE '%weather%' AND (LOWER(URLDIM.URL) LIKE '%weather%' OR LOWER(URLDIM.DESCRIPTION) LIKE '%weather%') AND TIMEDIM. [year] IS NOT NULL AND TIMEDIM. [month] IS NOT NULL AND TIMEDIM. [day of the month] IS NOT NULL ORDER BY YMD TIMESTAMP ASC DATE RANGE.EVENT DATE, QUERY FREQ.[calender week], QUERY_FREQ.[day of the week], COALESCE(COUNT(QUERY_FREQ.QUERY), 0) AS FREQ FROM DATE RANGE LEFT JOIN QUERY FREQ ON DATE RANGE.EVENT DATE = QUERY FREQ.YMD TIMESTAMP iROUP BY (DATE_RANGE.EVENT_DATE, QUERY_FREQ.[calender week], QUERY_FREQ.[day of the week]) RDER BY DATE RANGE.EVENT DATE:""

Output

Here, we can see the frequency of all weather related queries grouped by date.

	EVENT_DATE	calender week	day of the week	FREQ
0	2006-03-01	9	3	401
1	2006-03-02	9	4	314
2	2006-03-03	9	5	248
3	2006-03-04	9	6	244
4	2006-03-05	9	7	309
87	2006-05-27	21	6	279
88	2006-05-28	21		157
89	2006-05-29	22	1	334
90	2006-05-30	22	2	328
91	2006-05-31	22	3	267

Question 3

```
WITH TopURLs AS (
   SELECT URLDIM, URL
   FROM AOL SCHEMA.FACTS
   JOIN AOL SCHEMA.URLDIM ON AOL SCHEMA.FACTS.URLID = AOL SCHEMA.URLDIM.ID
   WHERE AOL SCHEMA, FACTS, CLICK = 1
   GROUP BY URLDTM URL
   ORDER BY COUNT(AOL SCHEMA.FACTS.CLICK) DESC
   I TMTT 20
).
FREOCOMP AS (
   SELECT
       FACTS.ANONID.
       QUERYDIM.QUERY,
        CAST(
            CONCAT(
                2006-1.
                LPAD (CASE
                    WHEN TIMEDIM. "day of the year" BETWEEN 60 AND 90 THEN '03'
                                                                                   SELECT
                    WHEN TIMEDIM. "day of the year" BETWEEN 91 AND 120 THEN '04'
                    WHEN TIMEDIM. "day of the year" BETWEEN 121 AND 151 THEN '05'
                    ELSE '01'
                                                                                   FROM
                END, 2, '0'), '-',
                LPAD(TIMEDIM. "day of the month", 2, '0'), ' '.
                LPAD(TIMEDIM. "hour", 2, '0'), ':'.
                LPAD(TIMEDIM. "minute", 2, '0'), ':',
                                                                                   ON
                LPAD(TIMEDIM. "second", 2, '0')
            ) AS TIMESTAMP
       ) AS time as datetime
   FROM
        AOL SCHEMA, FACTS
       LEFT JOIN AOL SCHEMA.TIMEDIM ON FACTS.TIMEID = TIMEDIM.ID
       LEFT JOIN AOL SCHEMA.URLDIM ON FACTS.URLID = URLDIM.ID
        LEFT JOIN AOL SCHEMA. QUERYDIM ON FACTS. QUERYID = QUERYDIM. ID
```

```
WHERE FACTS.CLICK = 1
        AND (
            URLDIM.URL IN (SELECT URL FROM TODURLS)
            OR LOWER(URLDIM.URL) LIKE '%weather%'
        AND FACTS.ANONID IS NOT NULL
        AND TIMEDIM. "hour" IS NOT NULL
        AND TIMEDIM. "minute" IS NOT NULL
        AND TIMEDIM, "second" IS NOT NULL
        AND TIMEDIM. "day of the year" IS NOT NULL
DateRange AS (
   SELECT DATE '2006-03-01' AS EVENT DATE
   UNTON ALL SELECT DATE '2006-03-02'
   UNION ALL SELECT DATE '2006-03-03'
   UNION ALL SELECT DATE '2006-05-31'
   DateRange.EVENT DATE AS guery date.
    COALESCE(COUNT(*), 0) AS number of queries
    DateRange
LEFT JOIN
    FREQCOMP E
   CAST(E.time as datetime AS DATE) = DateRange.EVENT DATE
AND LOWER(E.OUERY) LIKE '%tornado%'
GROUP BY
   DateRange.EVENT DATE
ORDER BY
    query date;
```

```
WITH DateRange AS (
   SELECT DATE '2006-03-01' AS EVENT DATE
   UNION ALL SELECT DATE '2006-03-02'
   UNION ALL SELECT DATE '2006-05-31'
SELECT
   DateRange.EVENT DATE,
   COALESCE(COUNT(E.EPISODE ID), 0) AS EVENT COUNT
FROM
   DateRange
LEFT JOIN
    AOL SCHEMA.WEATHER EVENTS E
ON
   CAST(E.BEGIN DATE TIME AS DATE) = DateRange.EVENT DATE
   AND E.EVENT TYPE = 'Tornado'
GROUP BY
   DateRange.EVENT DATE
ORDER BY
```

```
DateRange.EVENT_DATE;
```

Working of the query: These queries count AOL queries and events for each day, utilizing basic aggregate operations and SLICE/DICE.

Output

	QUERY_DATE	NUMBER_OF_QUERIES		EVENT_DATE	EVENT_COUNT
0	2006-03-01	18158	0	2006-03-01	318
1	2006-03-02	19156	1	2006-03-02	92
2	2006-03-03	17264	2	2006-03-03	14
3	2006-03-04	19478	3	2006-03-04	35
4	2006-03-05	21853	4	2006-03-05	30
87	2006-05-27	17136	87	2006-05-27	210
88	2006-05-28	12652	88	2006-05-28	191
89	2006-05-29	19669	89	2006-05-29	277
90	2006-05-30	18852	90	2006-05-30	374
91	2006-05-31	18833	91	2006-05-31	280

Question 4a

WITH Events_DATA AS (

SELECT we.EVENT_TYPE, we.BEGIN_DATE_TIME, we.END_DATE_TIME FROM AOL_SCHEMA.WEATHER_EVENTS we WHERE we.BEGIN_DATE_TIME >= '2006-03-01 00:01:00.000000' AND LOWER(we.EVENT_TYPE) LIKE 'tornado'

Relevant_Queries AS (

SELECT QUERIES_WEATHER.QUERY_LOWER_TRIMMED AS QUERY, QUERIES_WEATHER.FORMATTED_DATE, QUERIES_WEATHER.QUERY_ABOUT, we.EVENT_TYPE FROM Events_DATA we INNER JOIN AOL_SCHEMA.Weather_Reaction_Queries AS QUERIES_WEATHER ON QUERIES_WEATHER.FORMATTED_DATE BETWEEN we.BEGIN_DATE_TIME AND we.END_DATE_TIME

Grouped_Results AS (

SELECT QUERY, QUERY,ABOUT, EVENT_TYPE, COUNT(*) AS query_count FROM Relevant_Queries GROUP BY GROUPING SETS ((QUERY, QUERY_ABOUT, EVENT_TYPE), (QUERY, EVENT_TYPE)

OKEN_COUNT AS (COALESCE(QUERY_ABOUT, 'UNKNOWN') AS QUERY_ABOUT, -- Treat NULLs as 'UNKNOWN' for group by SUM(query_count) AS token_count FROM Tokens Oueries GROUP BY TOKEN, QUERY_ABOUT HAVING SUM(query_count)>2 ORDER BY token_count DESC TAL_QUERY_COUNT AS (QUERY_ABOUT, SUM(token_count) AS total_query_count FROM TOKEN COUNT GROUP BY QUERY_ABOUT ORMALIZED_TOKEN_COUNT AS (tc.TOKEN, tc.QUERY_ABOUT, tqc.total_query_count, WHEN tc.OUERY ABOUT = 'UNKNOWN' THEN (SELECT SUM(token_count) FROM TOKEN_COUNT WHERE QUERY_ABOUT = 'UNKNOWN')) END AS Group_Specific_Token_Probability FROM TOKEN COUNT to JOIN TOTAL_QUERY_COUNT tgc ON tc.QUERY_ABOUT = tqc.QUERY_ABOUT TOKEN, QUERY_ABOUT, Group_Specific_Token_Probability, ROM NORMALIZED_TOKEN_COUNT DER BY QUERY_ABOUT, Group_Specific_Token_Probability DESC;

Key operations utilized: INNER JOIN, GROUPING

SETS.

Working of the query: This Query obtain the weather queries for each query about (Weather and Tracking Alerts, Damage Assessment and Recovery etc...) during tornado. It also obtains the group specific token probability and percentage.

Output:

	TOKEN	QUERY_ABOUT	TOKEN_COUNT	TOTAL_QUERY_COUNT	GROUP_SPECIFIC_TOKEN_PROBABILITY	GROUP_SPECIFIC_TOKEN_PERCENTAGE
739	weather	Weather Tracking and Alerts	331	1981	0.167087	16.708733
740	bug	Weather Tracking and Alerts	67	1981	0.033821	3.382130
741	cold	Weather Tracking and Alerts	56	1981	0.028269	2.826855
742	temperature	Weather Tracking and Alerts	46	1981	0.023221	2.322060
743	hurricane	Weather Tracking and Alerts	43	1981	0.021706	2.170621
••••						
968	cheese	Weather Tracking and Alerts	3	1981	0.001514	0.151439
969	east	Weather Tracking and Alerts	3	1981	0.001514	0.151439
970	changes	Weather Tracking and Alerts	3	1981	0.001514	0.151439
971	handy	Weather Tracking and Alerts	3	1981	0.001514	0.151439
972	knife	Weather Tracking and Alerts	3	1981	0.001514	0.151439

Question 4b

WITH Ordered_Events AS (
SELECT
EVENT_TYPE,
REGION
BEGIN_DATE_TIME,
END_DATE_TIME,
LEAD (BEGIN_DATE_TIME) OVER (ORDER BY BEGIN_DATE_TIME) AS NEXT_END_DATE_TIME
FROM AOL_SCHEMA.WEATHER_EVENTS
WHERE EVENT_TYPE = 'Tornado'
ORDER BY BEGIN_DATE_TIME
Calculated_Events AS (
SELECT
EVENT_TYPE,
BEGIN_DATE_TIME,
END_DATE_TIME,
ADD_MINUTES(TO_TIMESTAMP(SUBSTR(END_DATE_TIME, 1, 19)), 1) AS WINDOW_START,
ADD_MINUTES(TO_TIMESTAMP(SUBSTR(NEXT_END_DATE_TIME, 1, 19)), -1) AS WINDOW_END
FROM Ordered_Events
Window_Events AS (
SELECT
EVENT_TYPE,
BEGIN_DATE_TIME,
END_DATE_TIME,
WINDOW_START,
WINDOW_END
FROM Calculated_Events
WHERE SECONDS_BETWEEN(WINDOW_END, WINDOW_START) >= 0
Relevant_Queries AS (
SELECT
qt.QUERY_LOWER_TRIMMED AS QUERY,
qt.QUERY_ABOUT,
qt.FORMATTED_DATE,
tq.EVENT_TYPE,
tg.BEGIN_DATE_TIME,
tq.END_DATE_TIME,
tq.WINDOW_START,
tq.WINDOW_END
FROM Window_Events tq
INNER JOIN AOL_SCHEMA.Weather_Reaction_Queries qt
ON qt.FORMATTED_DATE BETWEEN tq.WINDOW_START AND tq.WINDOW_END
Grouped_Results AS (
SELECT
QUERY,
EVENT_TYPE,
QUERY_ABOUT,
COUNT(*) AS query_count
FROM Relevant_Queries
GROUP BY GROUPING SETS (
(QUERY, EVENT_TYPE, QUERY_ABOUT),
(QUERY, EVENT_TYPE)

Tokens Oueries AS (FROM Grouped_Results ex INNER JOIN AOL_SCHEMA.tokenization_new_queries token ON ex.QUERY = token.QUERY TOKEN_COUNT AS (SELECT COALESCE(QUERY_ABOUT, 'UNKNOWN') AS QUERY_ABOUT, -- Treat NULLs as 'UNKNOWN' for group by FROM Tokens_Queries GROUP BY TOKEN, OUERY ABOUT ORDER BY token_count DESC TOTAL_QUERY_COUNT AS (FROM TOKEN_COUNT GROUP BY QUERY_ABOUT Normalize token probabilities for 'UNKNOWN' and other OUERY ABOUT NORMALIZED_TOKEN_COUNT AS ((SELECT SUM(token_count) FROM TOKEN_COUNT WHERE QUERY_ABOUT = 'UNKNOWN')) FROM TOKEN_COUNT to JOIN TOTAL_QUERY_COUNT tqc Final selection with normalized probabilities OUERY ABOUT. Group_Specific_Token_Probability#100 AS Group_Specific_Token_Percentage ROM NORMALIZED_TOKEN_COUNT DER BY QUERY_ABOUT,Group_Specific_Token_Probability DESC;

Key operations utilized: LEAD, ADD_MINUTES, SECONDS_BETWEEN, INNER JOIN, GROUPING SETS..

Working of the query: This Query obtain the weather queries for each query about (Weather and Tracking Alerts, Damage Assessment and Recovery etc...) after Tornado.. It Also obtain the group specific token probability and percentage.

Output:

	TOKEN	QUERY_ABOUT	TOKEN_COUNT	TOTAL_TOKEN_COUNT	GROUP_SPECIFIC_TOKEN_PROBABILITY	GROUP_SPECIFIC_TOKEN_PERCENTAGE
0	insurance	Damage Assessment and Recovery	9625	41534	0.231738	23.173785
1	repair	Damage Assessment and Recovery	3398	41534	0.081812	8.181249
2	health	Damage Assessment and Recovery	1198	41534	0.028844	2.884384
3	auto	Damage Assessment and Recovery	943	41534	0.022704	2.270429
4	life	Damage Assessment and Recovery	852	41534	0.020513	2.051331
13971	marco	Weather Tracking and Alerts	3	74301	0.000040	0.004038
13972	cooler	Weather Tracking and Alerts	3	74301	0.000040	0.004038
13973	straw	Weather Tracking and Alerts	3	74301	0.000040	0.004038
13974	brunswick	Weather Tracking and Alerts	3	74301	0.000040	0.004038
13975	killed	Weather Tracking and Alerts	3	74301	0.000040	0.004038

Code 7:

import pandas as pd import nltk from nltk.stem import WordNetLemmatizer

Download required NLTK resources (if you haven't already)
nltk.download('wordnet')
nltk.download('onw-1,4')

Initialize the lemmatizer
lemmatizer = WordNetLemmatizer()

Function to lemmatize tokens
def lemmatize_token(token):
 return lemmatizer.lemmatize(token)

Apply lemmatization to the 'TOKEN' column
query_events['LEMMATIZED_TOKEN'] = query_events['TOKEN'].apply(lemmatize_token)

query_result = query_events.groupby(
 ['QUERY_ABOUT', 'LEMMATIZED_TOKEN'], as_index=False
).agg({
 'GROUP_SPECIFIC_TOKEN_PROBABILITY': 'sum',
 'GROUP_SPECIFIC_TOKEN_PERCENTAGE': 'sum'

Print the result
print(query_result)

This code performs word lemmatization, converting words to their base form, and appends their associated group-specific token probability and percentage.

Libraries used: nltk

Required nltk resources: wordnet, omw-1.4

Code 8:

during_tokens = query_during_tornado[['LEMMATIZED_TOKEN', 'GROUP_SPECIFIC_TOKEN_PROBABILITY']]
after_tokens = query_after_tornado[['LEMMATIZED_TOKEN', 'GROUP_SPECIFIC_TOKEN_PROBABILITY']]

Create weighted frequency dictionaries for both during and after tornado def create_weighted_dict(tokens_df):

Creates a dictionary of tokens with their respective probability values.

return dict(zip(tokens_df['LEMMATIZED_TOKEN'], tokens_df['GROUP_SPECIFIC_TOKEN_PROBABILITY']))

Create the weighted dictionaries for both during and after tornado groups during_weighted_dict = create_weighted_dict(during_tokens) after_weighted_dict = create_weighted_dict(after_tokens)

Find common tokens between the two dataframes common_tokens = set(during_weighted_dict.keys()) & set(after_weighted_dict.keys())

Filter the weighted dictionaries to include only common tokens common_during_dict = {token: during_weighted_dict[token] for token in common_tokens} common_after_dict = {token: after_weighted_dict[token] for token in common_tokens)

unique_during_tokens = set(during_weighted_dict.keys()) - set(after_weighted_dict.keys())
unique_after_tokens = set(after_weighted_dict.keys()) - set(during_weighted_dict.keys())

|Filter the weighted dictionaries to include only common tokens unique_during_dict = {token: during_weighted_dict[token] for token in unique_during_tokens} unique_after_dict = {token: after_weighted_dict[token] for token in unique_after_tokens}

Word Cloud for During Tornado
unique_during_wordcloud = WordCloud(width=800, height=400,background_color='white').generate_from_frequencies(unique_during_dict)

Word Cloud for After Tornado unique_after_wordcloud = WordCloud(width=800, height=400,background_color='white').generate_from_frequencies(unique_after_dict) This code filters the common and distinct words between during and after tornado.

Query 5a

SELECT
TI.ANONID,
TI.INGR AS DATETIME,
COALESC(LAG(THRE, S DATETIME) OVER (PARTITION BY ANONID ORDER BY TIME AS DATETIME), TIME AS DATETIME) AS LaggedDateTime,
SECONDS BETWEEN TAILING OWER (PARTITION OF ANOLGO TAILED OWER OF THE STATES), THE STATES OWER BY THE AS DATETIME), THE AS DATETIME) as Seconds Difference,
MINUTES BETWEEN(TIT.TIME_S_DATETIME, COALESCE(LAG(TIME_S_DATETIME) OVER (FARTITION BY ANONED ONDER BY TIME_S_DATETIME), TIME_SDATETIME) as Minutes_Difference
Paroles_between(11.11me_AS_DATETIME, CORESCE(LAG(11me_AS_DATETIME) OVER (PARTITION BY ANOMED ORDER BY TIME_AS_DATETIME), TIME_AS_DATETIME)) as minutes_DITTERENCE FROM
AOL SCHEMA.INTERARRIVAL TIMES as T1
WHERE TI.ANONID IN (
SELECT 12. ANONID
FROM AOL SCHEMA.INTERARRIVAL TIMES as T2
GRUP BY T2. ANNID
HAVING COUNT(Z.ANONID) >= 10
AND NOT EXISTS(
SELECT 1
FROM AOL SCHEMA. WEATHER EVENTS as T3
WHERE
(11.TIME_AS_DATETIME BETWEEN T3.BEGIN_DATE_TIME AND T3.END_DATE_TIME)
($T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T$
ORDER BY
TI.ANONID,
TI.TIME AS DATETIME

Key operations utilized: Coalesce, Partition By ,Seconds/Minutes Between, Slice/Dice

Working of the query:

Retrieves the UserID, time, lagged time, and interclick times (in seconds and minutes) for users who clicked on at least 10 of the top 20 most popular links, excluding clicks during disasters.

Output

	ANONID	TIME_AS_DATETIME	LAGGEDDATETIME	SECONDS_DIFFERENCE	MINUTES_DIFFERENCE
0	15	2006-03-11 09:55:17.000000	2006-03-11 09:55:17.000000	0	0.000000
1	15	2006-03-18 21:02:45.000000	2006-03-11 09:55:17.000000	644848	10747.466667
2	15	2006-03-18 21:06:01.000000	2006-03-18 21:02:45.000000	196	3.266667
3	15	2006-03-21 19:55:51.000000	2006-03-18 21:06:01.000000	254990	4249.833333
4	15	2006-03-21 20:09:22.000000	2006-03-21 19:55:51.000000	811	13.516667
999853	657399	2006-04-11 09:28:37.000000	2006-04-11 09:22:01.000000	396	6.600000
999854	657399	2006-04-11 09:33:27.000000	2006-04-11 09:28:37.000000	290	4.833333
999855	657399	2006-04-11 09:36:22.000000	2006-04-11 09:33:27.000000	175	2.916667
999856	657399	2006-04-24 19:48:08.000000	2006-04-11 09:36:22.000000	1159906	19331.766667
999857	657399	2006-04-29 19:11:47.000000	2006-04-24 19:48:08.000000	429819	7163.650000

Query 5b

SELECT
T1.ANONID,
T1.TIME_AS_DATETIME,
COALESCE(LAG(TIME_AS_DATETIME) OVER (PARTITION BY ANONID ORDER BY TIME_AS_DATETIME), TIME_AS_DATETIME) AS LaggedDateTime,
SECONDS_BETWEEN(T1.TIME_AS_DATETIME, COALESCE(LAG(TIME_AS_DATETIME) OVER (PARTITION BY ANONID ORDER BY TIME_AS_DATETIME), TIME_AS_DATETIME)) as Seconds_Difference,
MINUTES_BETWEEN(T1.TIME_AS_DATETIME, COALESCE(LAG(TIME_AS_DATETIME) OVER (PARTITION BY ANONID ORDER BY TIME_AS_DATETIME), TIME_AS_DATETIME)) as Minutes_Difference
FROM
AOL_SCHEMA.INTERARRIVAL_TIMES as T1
WHERE
T1.ANONID IN (
SELECT T2.ANONID
FROM AOL_SCHEMA.INTERARRIVAL_TIMES as T2
GROUP BY T2.ANONID
HAVING COUNT(T2.ANONID) >= 10
AND EXISTS(
SELECT 1
FROM AOL_SCHEMA.WEATHER_EVENTS as T3
WHERE
(T1.TIME_AS_DATETIME BETWEEN T3.BEGIN_DATE_TIME AND T3.END_DATE_TIME)
AND (T3.EVENT_TYPE = 'Tornado')
ORDER BY
T1.ANONID,
T1.TIME_AS_DATETIME

Key operations utilized: Coalesce, Partition By, Seconds/Minutes Difference, Exists

Working of the query: Retrieves the UserID, time, lagged time, and interclick times (in seconds and minutes) for users who clicked on at least 10 of the top 20 most popular links during a tornado

Output

	ANONID	TIME_AS_DATETIME	LAGGEDDATETIME	SECONDS_DIFFERENCE	MINUTES_DIFFERENCE
0	25	2006-04-02 20:15:56.000000	2006-04-02 20:15:56.000000	0	0.000000
1	25	2006-04-15 15:55:54.000000	2006-04-02 20:15:56.000000	1107598	18459.966667
2	25	2006-04-15 17:30:44.000000	2006-04-15 15:55:54.000000	5690	94.833333
3	29	2006-03-12 19:47:08.000000	2006-03-12 19:47:08.000000	0	0.000000
4	29	2006-03-12 21:54:36.000000	2006-03-12 19:47:08.000000	7648	127.466667
28512	657282	2006-04-16 13:35:13.000000	2006-04-16 13:35:13.000000	0	0.000000
28513	657283	2006-04-02 16:37:24.000000	2006-04-02 16:37:24.000000	0	0.000000
28514	657283	2006-04-02 19:10:12.000000	2006-04-02 16:37:24.000000	9168	152.800000
28515	657283	2006-04-02 19:10:12.000000	2006-04-02 19:10:12.000000	0	0.000000
28516	657307	2006-04-07 15:49:40.000000	2006-04-07 15:49:40.000000	0	0.000000

Bonus Question - a

This query identifies the most clicked domains or URLs and matches them by time to specific weather events and regions where they occurred, ranking them based on the number of clicks

1	WITH ClickedDomains AS (29	RankedDomains AS (
2	SELECT		SELECT
3	AOL_SCHEMA.WEATHER_EVENTS.REGION AS REGION,		REGION,
4	AOL_SCHEMA.WEATHER_EVENTS.EVENT_TYPE AS EVENT_TYPE,		EVENT_TYPE,
5	AOL_SCHEMA.WEATHER_EVENTS.BEGIN_DATE_TIME_AS_BEGIN_DATE_TIME,		BEGIN_DATE_TIME,
6	AOL_SCHEMA.URLDIM.THISDOMAIN AS THISDOMAIN,		THISDOMAIN,
7	AOL_SCHEMA.URLDIM.URL AS URL,	35	URL,
8	COUNT(AOL_SCHEMA.FACTS.URLID) AS CLICK_COUNT		CLICK_COUNT,
9			ROW_NUMBER() OVER (
10	AOL_SCHEMA.WEATHER_EVENTS		PARTITION BY REGION, EVENT_TYPE
11			ORDER BY CLICK_COUNT DESC
12	AOL_SCHEMA.FACTS) AS RANK
13	ON AOL_SCHEMA.WEATHER_EVENTS.BEGIN_DAY = AOL_SCHEMA.FACTS.TIMEID		FROM
14			ClickedDomains
15	AOL_SCHEMA.URLDIM		WHERE
16	ON AOL_SCHEMA.FACTS.URLID = AOL_SCHEMA.URLDIM.ID		THISDOMAIN IS NOT NULL OR URL IS NOT NULL
17)
18	AOL_SCHEMA.FACTS.CLICK = TRUE		SELECT
19	AND (AOL_SCHEMA.URLDIM.THISDOMAIN IS NOT NULL OR AOL_SCHEMA.URLDIM.URL IS NOT NULL)		REGION,
20	AND AOL_SCHEMA.WEATHER_EVENTS.BEGIN_DATE_TIME BETWEEN '2006-03-01 00:00:00' AND '2006-05-31 23:59:59'		EVENT_TYPE,
21	GROUP BY ROLLUP(BEGIN_DATE_TIME,
22	AOL_SCHEMA.WEATHER_EVENTS.REGION,		THISDOMAIN,
23	AOL_SCHEMA.WEATHER_EVENTS.EVENT_TYPE,		URL,
24	AOL_SCHEMA.WEATHER_EVENTS.BEGIN_DATE_TIME,		CLICK_COUNT
25	AOL_SCHEMA.URLDIM.THISDOMAIN,		FROM
26	AOL_SCHEMA.URLDIM.URL		RankedDomains
27			WHERE
28	D,-	56	RANK = 1
	,	57	ORDER BY
	,	58	REGION,
	,	59	EVENT_TYPE,
	,	60	BEGIN DATE TIME:

Output

	REGION	EVENT_TYPE	BEGIN_DATE_TIME	THISDOMAIN	URL	CLICK_COUNT
0	Alabama	Flash Flood	2006-03-20 18:45:00.000000	nau	http://www.nau.edu	3
1	Alabama	Funnel Cloud	2006-03-20 17:55:00.000000	nau	http://www.nau.edu	3
2	Alabama	Hail	2006-04-20 17:08:00.000000	nau	http://www.nau.edu	6
3	Alabama	Lightning	2006-04-18 18:10:00.000000	citysearch	http://pittsburgh.citysearch.com	1
4	Alabama	Strong Wind	2006-03-09 14:15:00.000000	са	http://gocalif.ca.gov	1
487	Wyoming	Heavy Snow	2006-05-09 04:00:00.000000	са	http://gocalif.ca.gov	2
488	Wyoming	Lightning	2006-05-08 14:10:00.000000	ebay.co	http://www.ebay.co.uk	1
489	Wyoming	Thunderstorm Wind	2006-05-26 16:39:00.000000	yahoo	http://mail.yahoo.com	1
490	Wyoming	Wildfire	2006-04-10 09:00:00.000000	bilkent.edu	http://web.bilkent.edu.tr	1
491	Wyoming	Winter Storm	2006-04-24 01:00:00.000000	sharesong	http://www.sharesong.org	4

Bonus Question - b

This query returns the top 10 most clicked URLs / domains, that correspond to the certain weather events by time

1	WITH ClickedDomains AS (28	RankedDomains AS 🕻
	SELECT		SELECT
	AOL_SCHEMA.WEATHER_EVENTS.REGION AS REGION,		REGION,
	AOL SCHEMA.WEATHER EVENTS.EVENT TYPE AS EVENT TYPE,		EVENT_TYPE,
	AOL_SCHEMA.WEATHER_EVENTS.BEGIN_DATE_TIME_AS_BEGIN_DATE_TIME,	32	BEGIN_DATE_TIME,
	AOL SCHEMA.URLDIM.THISDOMAIN AS THISDOMAIN,		THISDOMAIN,
	AOL SCHEMA.URLDIM.URL AS URL,		URL,
	COUNT (AOL SCHEMA.FACTS.URLID) AS CLICK COUNT	35	CLICK_COUNT,
	FROM	36	ROW_NUMBER() OVER (
10	AOL SCHEMA.WEATHER EVENTS	37	PARTITION BY REGION
11	JOIN		ORDER BY CLICK_COUNT DESC, BEGIN_DATE_TIME ASC
12	AOL SCHEMA.FACTS) AS RANK FROM
13	ON AOL SCHEMA.WEATHER EVENTS.BEGIN DAY = AOL SCHEMA.FACTS.TIMEID	40	ClickedDomains
14		42	
15	AOL SCHEMA.URLDIM	43	Z SELECT
16	ON AOL SCHEMA.FACTS.URLID = AOL SCHEMA.URLDIM.ID	44	REGION,
17	WHERE		EVENT TYPE,
18	AOL SCHEMA.FACTS.CLICK = TRUE		BEGIN DATE TIME,
19	AND (AOL SCHEMA.URLDIM.THISDOMAIN IS NOT NULL OR AOL SCHEMA.URLDIM.URL IS NOT NULL)	47	THISDOMAIN,
	AND AOL SCHEMA.WEATHER EVENTS.BEGIN DATE TIME BETWEEN '2006-03-01 00:00:00' AND '2006-05-31 23:59:59'		URL,
21	GROUP BY		CLICK_COUNT
22	AOL SCHEMA.WEATHER EVENTS.REGION,		FROM
23	AOL SCHEMA.WEATHER EVENTS.EVENT TYPE,		RankedDomains
24	AOL SCHEMA.WEATHER EVENTS.BEGIN DATE TIME,	52	WHERE
25	AOL SCHEMA.URLDIM.THISDOMAIN,		RANK = 1
	AOL SCHEMA. URLDIM. URL	54	ORDER BY CLICK_COUNT DESC
27),	55	LIMIT 10;

Output

	REGION	EVENT_TYPE	BEGIN_DATE_TIME	THISDOMAIN	URL	CLICK_COUNT
0	Mississippi	Flash Flood	2006-03-20 15:00:00.000000	nau	http://www.nau.edu	12
1	Oklahoma	Wildfire	2006-03-15 12:00:00.000000	yahoo	http://mail.yahoo.com	10
2	North dakota	Flood	2006-04-01 00:00:00.000000	lib.rochester	http://www.lib.rochester.edu	9
3	South carolina	Hail	2006-05-20 13:50:00.000000	nau	http://www.nau.edu	9
4	Minnesota	Flood	2006-04-01 00:00:00.000000	nintendo	http://www.nintendo.com	8
5	Missouri	Hail	2006-04-02 14:30:00.000000	the-antiaging-site	http://www.the-antiaging-site.com	8
6	Indiana	Flash Flood	2006-03-12 05:30:00.000000	ikea	http://www.ikea.com	7
7	Texas	High Wind	2006-03-20 12:05:00.000000	nau	http://www.nau.edu	6
8	Washington	Thunderstorm Wind	2006-04-15 15:15:00.000000	yahoo	http://mail.yahoo.com	6
9	North carolina	Winter Weather	2006-03-20 12:00:00.000000	nau	http://www.nau.edu	6

Bonus Question diagram creation code

The output is on the slide 61

import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np

Generate a list of unique colors for each region
regions = top_domains['REGION'].unique()
colors = cm.tab20(np.linspace(0, 1, len(regions))) # Use colormap to generate colors
region_color_map = {region: colors[i] for i, region in enumerate(regions)} # Map each region to a unique color

Add a small reduced offset to CLICK_COUNT for overlapping points

jittered_clicks = top_domains.copy() jittered_clicks['JIITERED_CLICK_COUNT'] = jittered_clicks['CLICK_COUNT'] = jittered_clicks.duplicated(subset=['EVENT_TYPE', 'CLICK_COUNT'], keep=False), 'JIITERED_CLICK_COUNT'] += np.linspace(-0.1, 0.1, sum(jittered_clicks.duplicated(subset=['EVENT_TYPE', 'CLICK_COUNT'], keep=False)))

Create the scatter plot

Create the legend

plt.legend(handles=legend_elements, title="Region (URL)", bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=10)

Add titles and labels

```
plt.title('Clicks by Event Type and Region', fontsize=16)
plt.xlabel('Event Type', fontsize=14)
plt.ylabel('Click Count', fontsize=14)
plt.xticks(rotation=30, ha='right', fontsize=12) # Rotate x-axis labels for readability
plt.grid(axis-'y', linestyle='--', alpha=0.7) # Add a light grid for clarity
plt.tight ayout()
```

Show the plot
plt.show()

References

- <u>https://www.ncei.noaa.gov/pub/data/swdi/stormevents/csvfiles/legacy/</u>
- <u>https://www.ncdc.noaa.gov/stormevents/ftp.jsp</u>
- A Picture of Search
- GitHub: https://github.com/chandlerNick/BHT_BI_WiSe2425.git

Bonus Slide - How to deal with the old DB

Tips on getting the DB running (in the event our presentation is posted to moodle):

- 1. Install virtual box
- 2. Load your database image
- 3. Ensure you use both the NAT and Host only adapter in network settings
- 4. Install ODBC Data Sources and test a system DSN with the proper credentials
- 5. Use the given fingerprint in between the ip address and port
- 6. If using pyexasol, ensure you use the fingerprint again and that the protocol is the oldest one.

I hope this helps.

Problem Requirements

Subtasks

- 1. Define five interesting analysis question on this data set. You might pick up more, since not all chosen questions are answerable with the existing data and your additional data sources.
- Import missing data from one additional data source of your choice for resolving your queries into the database. Use your knowledge on JDBC and Extract-Transform-Load. Please check legal issues when importing data from "The Web".
- Formalize at least five of your queries with ROLAP Statements on EXASOL. Utilize operators such as SLICE, DICE, CUBE, ROLLUP, PARTITION BY, GROUPING SETS and other standard SQL statements such as joins, unions or intersections etc. (see the EXASOL manual for details on the syntax). You might also use PANDAS or Python functions to predict from the data.
- 4. Display your results as charts, for example with http://d3js.org or JFreeChart
- 5. Create a presentation for about 15 minutes and explain your analysis goal, your data sets, showcase selected "cool/surprising" queries and results/insights, explain why this is an important valuable finding, show your schema and explain your workload.
- 6. Create an appendix in your presentation, where you show the ROLAP queries and results as screenshots. Name on each slide, what this query should have done. Add to the appendix screenshots of the tables you created, including schema information.
- Upload this presentation to the Moodle-system with a filename <your name> (PDF/PPT) and present it in front of your peers. Check if your peers liked it and considered it insightful. ⁽ⁱ⁾