
Agentic Email
Automation 

1

… with
LangGraph  

Presented by: Gaurav Pandey, Nick Chandler, Anirudh Sarda,
Navnish Pandey, Yann L'Hotelier

 

  

Contents 
1. Demo 

2. LangGraph + LangChain Overview 

3. How Our Demo Was Built 

4. Error Analysis 

5. Conclusion 

 

  

2

Demo! 
 

3

Enter your data 

4

Give an email to review 
 

5

Examine results 
 

6

With non-spam email 
 

7

With non-spam email 
 

8

With non-spam email 
 

9

LangChain & LangGraph  
 
 
The Foundations of Our System 

10

● Framework for building LLM-powered applications 
 

● Connects prompts, tools, models, and memory 
 

● Ideal for linear and sequential workflows 
 

● Limited control over complex, branching logic 

 

What is LangChain? 

11

12

LangChain Workflow 

● Built on top of LangChain 
 

● Represents workflows as explicit graphs 
 

● Nodes = well-defined actions 
 

● Edges = controlled execution flow 
 

● Enables stateful, production-ready agents 

What is LangGraph? 

13

Email processing is non-linear: 
● Spam vs Human Review vs Machine Processing  
● Priority-based routing  
● Feedback and retry loops  

LangGraph enables: 
● Explicit control over decision paths  
● Safe, debuggable automation  
● Multi-agent and human-in-the-loop workflows  
● Production-grade reliability 

 

Why LangGraph for Our System? 

14

Thinking in LangGraph 
 

15

LangGraph agents are designed by modeling real workflows, not open-ended
LLM reasoning loops. 

● Identify the business process first 
 

● Important question is “What actually happens step by step?” 
 

 

Example (email automation): 
 Read -> Classify -> Route -> Draft -> Review -> Send 

 

 

 

16

Step 1 : Start from the real process (not the LLM) 

Each step in the process becomes a node. 

Node principles: 

● One node = one responsibility 
 

● Nodes are just Python functions 
 

● Nodes can make routing decisions 
 

Examples: 

➢ Read Email, Classify Intent, Search Documentation, Send Reply 

Step 2 : Break the workflow into discrete nodes 

17

Different kinds of work need different nodes. LangGraph distinguishes
what kind of work each node does 

➢ LLM nodes -> reasoning, classification, text generation 
 

➢ Data nodes -> database or document retrieval 
 

➢ Action nodes -> sending emails, creating tickets 
 

➢ Human nodes -> approval, edits, escalation 

 

Node Types 

18

LangGraph uses graphs, not hidden decision-making. 

● Nodes declare where they can go next 
 

● Transitions are designed upfront 
 

● No “LLM decides everything” black box 
 
 

❏ This makes execution safer, easier to debug and production-ready 
 

Step 3 : Design the Workflow and Decision Paths 

19

State is shared memory, not chat history. All nodes read and write to a shared
state object. 

State design rules: 
● Store raw data only  
● No formatted prompts  
● No generated explanations 

 

❏ State includes: Original inputs (emails, IDs), Search results, Draft responses 
 

 
 

Step 4 : Design State 

20

Different errors are handled differently: 

● Transient errors -> automatic retries 
 

● LLM-recoverable errors -> loop back with context 
 

● User-fixable errors -> pause for input 
 

● Unexpected errors -> bubble up for debugging 
 

Step 5 : Handle errors 

21

Human input is built into the graph, not bolted on. 

● interrupt() pauses execution 
 

● State is checkpointed 
 

● Workflow resumes exactly where it stopped 

 

❏ Used when high urgency, complex issues, quality or compliance matters 
 

Human Review Is Built into the Workflow 

22

Only essential edges are defined. 

● Routing happens inside nodes 
 

● Nodes return both State updates and next destination 

 
 

❏ This keeps the graph simple and predictable. 
 

Step 6 : Wire it together 

23

How LangGraph Differs from Other Agent Models 
 
 
  Classic Agents  LangGraph Agents 

State handling  Information embedded in
prompts 

Shared structured state
object 

Control flow  LLM decides next step
dynamically 

Flow explicitly defined in a
graph 

Human
involvement 

Added manually if needed  Built-in human review
steps 

Planning  Implicit inside the model  Designed ahead of time 

Debugging  Hard to trace decisions  Easy, step-by-step tracing 

24

How we built our demo
Nick & Yann

25

System Architecture 

VLLM
GPT-120B-OSS

Agentic
System

Frontend

26

Connections Summary 

● The VLLM component runs on an A100 80GB

● VLLM served on port 8000 to communicate with the agentic system

● Agentic system run via uvicorn on port 4000 to talk to front end

● Front end runs as a Streamlit service

27

VLLM 

● Optimized LLM Serving

● Memory-Efficient KV-Cache

● Paged Attention

● Open-Source

● Runs with a simple ‘kubectl apply -f vllm.yaml’ command

28

VLLM 

● This directory contains the infrastructure for
the system.

● The config is given here with parameters
specifying aspects about the LLM.

● To get an LLM like this, you need only to
deploy these yaml files.

● This was from digi-llm.

29

GPT-OSS-120B 

● ~120B Parameters (Quantized)

● Hybrid Attention

● Open-Weight Reasoning Model from OpenAI

● Works for multiple languages: German, French, Hindi, English

30

GPT-OSS-120B 

31

Agentic System 

● Built using LangGraph

● Consists of several nodes with distinct functionalities

● Provides interface between the frontend and the VLLM

● Core of the project

● A detailed overview is given in the next slides

32

Agentic System 

● Emails have their intent classified

● A response email is drafted

● Human-in-the-loop allows a person to re-draft

● Finally, the email can be sent

33

Agentic System 

34

Agentic System - State 

● Fundamentally, the system passes around state

● This is a wrapper around a TypedDict

● Information relevant to the system is stored
and modified via state

35

Agentic System - Graph 

● After state is defined, we define edges and
nodes

● Nodes are discrete actions

● Edges are where state can flow through the
graph

● The code shown is the graph API of LangGraph

● There is also a functional API

36

Agentic System -  
Read Mail 

● This is the read email node

● It shows how state will be updated

● Shows how the email is initially processed

37

Agentic System -  
Classify Intent 

● Classifies email’s intent and urgency

● Basic prompt engineering done to get the
classification

● Structured output used to ensure the
classifications exist

● After intent and urgency are decided, routing
based on the classification happens

● State is updated

38

Agentic System -  
Spam 

● If the mail was classified as spam we end the
graph

● In future work or a business context, these
could be stored or sent to cybersecurity

● Here we just log them

39

Agentic System -  
Draft Response 

● Drafts a response based on state

● Initially modeled from the LangGraph website
demo where they had customer service emails

● After response is drafted, classification from
previous step is used to determine the review
status

● The response is sent to the send reply or human
review

40

Agentic System -  
Human Review 

● The human review node allows the
Human-in-the-loop functionality of LangGraph
to be utilized

● Human decides to give the green light or to
stop the process

● This lightens the load of the humans tasked
with answering emails

41

Agentic System -  
Send Reply 

● The final send reply function sends the
response.

● In our case, it no-ops since we haven’t
connected the demo to an email service.

● This would be future work.

42

Agentic System -  
Bringing it Together 

● Exposes a FastAPI to allow the front end to talk
to the LangGraph System

● This puts everything together and is where any
front-end would go to talk to it

● In practice, you could hook this up to an email
service but we demo it with streamlit

43

Frontend 

● Built a Streamlit app

● Why Streamlit?
○ Rapid prototyping of AI applications.
○ Directly integrates with the Python backend logic.

44

Frontend 

The purpose was :

● Allows for input of an email

● Returns a draft email, a processing/priority classification

● Could be replaced with a service such as n8n

45

Frontend 

How this application work ?

46

Frontend 

How this application work ?

47

Why this is working ?

Frontend 

48

Frontend 

49

Error Analysis 

50

● 74 emails in English 
○ 30 Spam emails 

■ No priority category 
■ E.g. promotions, phising 

○ 28 Human Review emails 
■ Priority category: 

● Low 
● Medium 
● High 

■ E.g. billing system error 
○ 16 Machine processable emails 

■ Priority category (as above) 
■ E.g. questions about information in documentation 

 

Dataset 

51

Example Spam Email 

52

Example Human Review Email 

53

Example Machine Processable Email 

54

● The classifier node of our system classified the processing step and priority of

each email 

● We report: 

○ Accuracy: Number of correct predictions / total predictions 

○ Precision (macro): TP / (TP+FP) 

○ Recall (macro): TP / (TP+FN) 

○ F1 Score (macro): 2⋅(Precision⋅Recall) / (Precision + Recall)  

 

Quantitative Error Analysis 
 

55

● Accuracy: 94.59% 

● Precision (macro): 72.58% 

● Recall (macro): 69.48% 

● F1 Score (macro): 70.72% 

 

● The accuracy is quite high and the F1 score is tolerable. 

● This shows that the system is able to leverage the LLM for direct classification 

 

Quantitative Error Analysis - Processing Step 
 

56

● Accuracy: 56.82% 

● Precision (macro): 60.39% 

● Recall (macro): 61.27% 

● F1 Score (macro): 54.52% 

 

● This is far lower than for the processing classification 
○ A possible cause could be the focus in the system being to get the

processing right 

 

Quantitative Error Analysis - Priority 
 

57

Quantitative Error Analysis - Processing vs Priority 
 

58

● Multilingual comprehension: Ensures accurate understanding of intent and
context across different languages like Hindi, German, and English. 
 

● Consistent classification: Validates reliable spam detection and priority
handling across different languages. 
 

● Quality responses: Confirms natural and context-aware response generation
for global scalability. 
 

 

Analysis on different languages emails  
 

59

Classifying Hindi Language Email as Spam 
 

60

Classifying Hindi Language Email Intent for Human review 
 

61

Classifying Deutsch Language Email Intent as Human review 
 

62

Misclassification of Email Intent  
 

63

Conclusion 

64

● Built an agentic system using LangGraph to answer emails

● Examined how LangGraph works

● Did a technical deep dive into our system

● Looked at the system’s performance

What Did We Do?

65

Thank you 

66

Questions? 

67

● https://openai.com/index/introducing-gpt-oss/
● https://docs.langchain.com/oss/python/langgraph/thinking-in-langgraph
● https://github.com/chandlerNick/langchain-multi-agent-demo
● https://forethought.ai/case-studies/achievers
● https://www.bbc.com/news/technology-68025677

Sources

68

https://openai.com/index/introducing-gpt-oss/
https://docs.langchain.com/oss/python/langgraph/thinking-in-langgraph
https://github.com/chandlerNick/langchain-multi-agent-demo
https://forethought.ai/case-studies/achievers
https://www.bbc.com/news/technology-68025677

