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Demo! 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Enter your data 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Give an email to review 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Examine results 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With non-spam email 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With non-spam email 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With non-spam email 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LangChain & LangGraph  
 
 
The Foundations of Our System 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● Framework for building LLM-powered applications 
 

● Connects prompts, tools, models, and memory 
 

● Ideal for linear and sequential workflows 
 

● Limited control over complex, branching logic 

 

What is LangChain? 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LangChain Workflow 



● Built on top of LangChain 
 

● Represents workflows as explicit graphs 
 

● Nodes = well-defined actions 
 

● Edges = controlled execution flow 
 

● Enables stateful, production-ready agents 

What is LangGraph? 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Email processing is non-linear: 
● Spam vs Human Review vs Machine Processing  
● Priority-based routing  
● Feedback and retry loops  

LangGraph enables: 
● Explicit control over decision paths  
● Safe, debuggable automation  
● Multi-agent and human-in-the-loop workflows  
● Production-grade reliability 

 

Why LangGraph for Our System? 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Thinking in LangGraph 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LangGraph agents are designed by modeling real workflows, not open-ended 
LLM reasoning loops. 

● Identify the business process first 
 

● Important question is “What actually happens step by step?” 
 

 

Example (email automation): 
 Read -> Classify -> Route -> Draft -> Review -> Send 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Step 1 : Start from the real process (not the LLM) 



Each step in the process becomes a node. 

Node principles: 

● One node = one responsibility 
 

● Nodes are just Python functions 
 

● Nodes can make routing decisions 
 

Examples: 

➢ Read Email, Classify Intent, Search Documentation, Send Reply 

Step 2 : Break the workflow into discrete nodes 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Different kinds of work need different nodes. LangGraph distinguishes 
what kind of work each node does 

➢ LLM nodes -> reasoning, classification, text generation 
 

➢ Data nodes -> database or document retrieval 
 

➢ Action nodes -> sending emails, creating tickets 
 

➢ Human nodes -> approval, edits, escalation 

 

Node Types 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LangGraph uses graphs, not hidden decision-making. 

● Nodes declare where they can go next 
 

● Transitions are designed upfront 
 

● No “LLM decides everything” black box 
 
 

❏ This makes execution safer, easier to debug and production-ready 
 

Step 3 : Design the Workflow and Decision Paths 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State is shared memory, not chat history. All nodes read and write to a shared 
state object. 

State design rules: 
● Store raw data only  
● No formatted prompts  
● No generated explanations 

 

❏ State includes: Original inputs (emails, IDs), Search results, Draft responses 
 

 
 

Step 4 : Design State 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Different errors are handled differently: 

● Transient errors -> automatic retries 
 

● LLM-recoverable errors -> loop back with context 
 

● User-fixable errors -> pause for input 
 

● Unexpected errors -> bubble up for debugging 
 

Step 5 : Handle errors 

21



Human input is built into the graph, not bolted on. 

● interrupt() pauses execution 
 

● State is checkpointed 
 

● Workflow resumes exactly where it stopped 

 

❏ Used when high urgency, complex issues, quality or compliance matters 
 

Human Review Is Built into the Workflow 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Only essential edges are defined. 

● Routing happens inside nodes 
 

● Nodes return both State updates and next destination 

 
 

❏ This keeps the graph simple and predictable. 
 

Step 6 : Wire it together 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How LangGraph Differs from Other Agent Models 
 
 
  Classic Agents  LangGraph Agents 

State handling  Information embedded in 
prompts 

Shared structured state 
object 

Control flow  LLM decides next step 
dynamically 

Flow explicitly defined in a 
graph 

Human 
involvement 

Added manually if needed  Built-in human review 
steps 

Planning  Implicit inside the model  Designed ahead of time 

Debugging  Hard to trace decisions  Easy, step-by-step tracing 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How we built our demo
Nick & Yann
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System Architecture 

VLLM
GPT-120B-OSS

Agentic 
System

Frontend
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Connections Summary 

● The VLLM component runs on an A100 80GB

● VLLM served on port 8000 to communicate with the agentic system

● Agentic system run via uvicorn on port 4000 to talk to front end

● Front end runs as a Streamlit service
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VLLM 

● Optimized LLM Serving

● Memory-Efficient KV-Cache

● Paged Attention

● Open-Source

● Runs with a simple ‘kubectl apply -f vllm.yaml’ command
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VLLM 

● This directory contains the infrastructure for 
the system.

● The config is given here with parameters 
specifying aspects about the LLM.

● To get an LLM like this, you need only to 
deploy these yaml files.

● This was from digi-llm.
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GPT-OSS-120B 

● ~120B Parameters (Quantized)

● Hybrid Attention

● Open-Weight Reasoning Model from OpenAI

● Works for multiple languages: German, French, Hindi, English
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GPT-OSS-120B 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Agentic System 

● Built using LangGraph

● Consists of several nodes with distinct functionalities

● Provides interface between the frontend and the VLLM

● Core of the project

● A detailed overview is given in the next slides
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Agentic System 

● Emails have their intent classified

● A response email is drafted

● Human-in-the-loop allows a person to re-draft

● Finally, the email can be sent
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Agentic System 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Agentic System - State 

● Fundamentally, the system passes around state

● This is a wrapper around a TypedDict

● Information relevant to the system is stored 
and modified via state
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Agentic System - Graph 

● After state is defined, we define edges and 
nodes

● Nodes are discrete actions

● Edges are where state can flow through the 
graph

● The code shown is the graph API of LangGraph

● There is also a functional API
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Agentic System -  
Read Mail 

● This is the read email node

● It shows how state will be updated 

● Shows how the email is initially processed
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Agentic System -  
Classify Intent 

● Classifies email’s intent and urgency

● Basic prompt engineering done to get the 
classification

● Structured output used to ensure the 
classifications exist

● After intent and urgency are decided, routing 
based on the classification happens

● State is updated
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Agentic System -  
Spam 

● If the mail was classified as spam we end the 
graph

● In future work or a business context, these 
could be stored or sent to cybersecurity

● Here we just log them
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Agentic System -  
Draft Response 

● Drafts a response based on state

● Initially modeled from the LangGraph website 
demo where they had customer service emails

● After response is drafted, classification from 
previous step is used to determine the review 
status

● The response is sent to the send reply or human 
review
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Agentic System -  
Human Review 

● The human review node allows the 
Human-in-the-loop functionality of LangGraph 
to be utilized

● Human decides to give the green light or to 
stop the process

● This lightens the load of the humans tasked 
with answering emails
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Agentic System -  
Send Reply 

● The final send reply function sends the 
response.

● In our case, it no-ops since we haven’t 
connected the demo to an email service.

● This would be future work.
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Agentic System -  
Bringing it Together 

● Exposes a FastAPI to allow the front end to talk 
to the LangGraph System

● This puts everything together and is where any 
front-end would go to talk to it

● In practice, you could hook this up to an email 
service but we demo it with streamlit
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Frontend 

● Built a Streamlit app

● Why Streamlit?
○ Rapid prototyping of AI applications.
○ Directly integrates with the Python backend logic.
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Frontend 

The purpose was : 

● Allows for input of an email

● Returns a draft email, a processing/priority classification

● Could be replaced with a service such as n8n

45



Frontend 

How this application work ?
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Frontend 

How this application work ?
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Why this is working ?

Frontend 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Frontend 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Error Analysis 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● 74 emails in English 
○ 30 Spam emails 

■ No priority category 
■ E.g. promotions, phising 

○ 28 Human Review emails 
■ Priority category: 

● Low 
● Medium 
● High 

■ E.g. billing system error 
○ 16 Machine processable emails 

■ Priority category (as above) 
■ E.g. questions about information in documentation 

 

Dataset 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Example Spam Email 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Example Human Review Email 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Example Machine Processable Email 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● The classifier node of our system classified the processing step and priority of 

each email 

● We report: 

○ Accuracy: Number of correct predictions / total predictions 

○ Precision (macro): TP / (TP+FP ) 

○ Recall (macro): TP  /  (TP+FN) 

○ F1 Score (macro): 2⋅(Precision⋅Recall ) / (Precision + Recall)  

 

Quantitative Error Analysis 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● Accuracy: 94.59% 

● Precision (macro): 72.58% 

● Recall (macro): 69.48% 

● F1 Score (macro): 70.72% 

 

● The accuracy is quite high and the F1 score is tolerable. 

● This shows that the system is able to leverage the LLM for direct classification 

 

Quantitative Error Analysis - Processing Step 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● Accuracy: 56.82% 

● Precision (macro): 60.39% 

● Recall (macro): 61.27% 

● F1 Score (macro): 54.52% 

 

● This is far lower than for the processing classification 
○ A possible cause could be the focus in the system being to get the 

processing right 

 

Quantitative Error Analysis - Priority 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Quantitative Error Analysis - Processing vs Priority 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● Multilingual comprehension: Ensures accurate understanding of intent and 
context across different languages like Hindi, German, and English. 
 

● Consistent classification: Validates reliable spam detection and priority 
handling across different languages. 
 

● Quality responses: Confirms natural and context-aware response generation 
for global scalability. 
 

 

Analysis on different languages emails  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Classifying Hindi Language Email as Spam 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Classifying Hindi Language Email Intent for Human review 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Classifying Deutsch Language Email Intent as Human review 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Misclassification of Email Intent  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Conclusion 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● Built an agentic system using LangGraph to answer emails

● Examined how LangGraph works

● Did a technical deep dive into our system

● Looked at the system’s performance

What Did We Do?
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Thank you 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Questions? 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● https://openai.com/index/introducing-gpt-oss/
● https://docs.langchain.com/oss/python/langgraph/thinking-in-langgraph
● https://github.com/chandlerNick/langchain-multi-agent-demo
● https://forethought.ai/case-studies/achievers
● https://www.bbc.com/news/technology-68025677

Sources
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